cho hình chữ nhật ABCD.goi K la hinh chieu vuong goc cua B tren AC,M va N lan luot la trung diem cua AK va DC. Cm: BM vuong góc MN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác BDM và tam giác CEM có:
BM=CM(gt)
\(\widehat{BMD}\)=\(\widehat{CME}\)(vì đối đỉnh)
\(\Rightarrow\)tam giác BDM=tam giác CEM( CH-GN)
b, xét tam giác BEM và tam giác CDM có
BM=CM
\(\widehat{CMD}\)=\(\widehat{BME}\)(đối đỉnh)
MD=ME(theo câu a)
\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CDM(c.g.c)
\(\Rightarrow\)\(\widehat{MCD}\)=\(\widehat{MBE}\) mà 2 góc này ở vị trí so le trong nên BE//CD
c) Xét tam giác ABM có: MH vuông AB, BD vuông AM
Mà BD cắt MH tại I
=> I là trực tâm
Gọi J là giao của AI và BC khi đó:
AJ vuông BC
Xét 2 tam giác vuông AJM vàCEM có:
AM=MC(=1/2BC)( vì tam giác ABC vuông thì trung tuyến bằng 1/2 cạnh huyền)
góc IMA=góc EMC
=> Tam giác ẠM=tam giác CEM
=> \(\widehat{JAM}=\widehat{ECM}\) mặt khác MA=MC=> tam giác MAC cân => \(\widehat{MAN}=\widehat{MCN}\)
từ đó suy ra \(\widehat{IAN}=\widehat{ECN}\)
Gọi K là giao điểm của AI và CE
=> tam giác KAC cân
=> KA=KC
=> K nằm trên đường trung trực AC
Mặc khác MN là đường cao của tam giác cân MAC
=> MN là đường trung trực của AC
=> MN qua K
vậy MN, AI và CE đồng quy tại K
=>
Bạn tự vẽ hình nhé
Xét các tam giác vuông AKM và tam giác vuông CHN có
AM=NC ( bằng 1 nửa đoạn AB=AC)
Góc MAK= góc NCH ( cùng phụ với AMC)
=> \(\Delta AKM=\Delta CHN\)( cạnh huyền - góc nhọn)
=> AK=HC ( 2 cạnh tương ứng)
Ta có NH//AK( quan hệ giữa tính vuông góc và song song) (1)
Có N là trung điểm của cạnh AC (2)
Từ (1) và (2) => NH là đường trung bình của \(\Delta ACK\)
=>H là trung điểm của KC
b) Theo câu a, ta có AK=HC và KH=HC
=>AK=HC
=> AK2+KH2=AH2
=>2.AK2=16
=>AK2=8
=>AK=KH=\(\sqrt{8}\)
=>KC=2.KH=2.\(\sqrt{8}\)=\(\sqrt{32}\)
Xét tam giác vuông AKC vuông tại K có AC2=AK2+KC2
=>AC2=8+32=40
=>\(AC=AB=\sqrt{40}\)
Diện tích tam giác ABC là
\(\frac{\sqrt{40}.\sqrt{40}}{2}=\frac{40}{2}=20\) cm2
Câu c hình như sai đề
Theo cau a ta co:
goc BAK = gocACH va AK = CH
Ta CM duoc tam giac BKA = Tam giac AHC ( c . g . c )
Suy ra goc DKA = goc AHC
Ma tam giac AKH vuong tai A
Suy ra goc AHK = 45 do
Suy ra goc AHC = 135 do ( ke bu )
Hay goc AKB = 135 do
Ta co goc AKH = 90 do Suy ra goc BKH = 135 do
Hay AKB = 135 do
Ta lai co goc AKH = 90 do Suy ra BKH = 35 do
Suy ra tam giac BKA = tam gic BKM
goc BHK = goc BAK
Do HE || AC ( cung vuong goc AB )
Suy ra goc EHM = goc ACH Va goc BAK = goc ACH
Suy ra BHK = MHE
HM la tia phan giac goc EHB