tìm số tự nhiên x,biết
a)5x + 5x+2 = 650
b) 2x+1 . 3y = 12x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>12x-64=32
=>12x=96
=>x=8
b: =>x-1=5
=>x=6
c: =>2^x*3=96
=>2^x=32
=>x=5
\(a,5^x+5^{x+2}=650\\ \Rightarrow a,5^x+5^x.25=650\\ \Rightarrow26.5^x=650\\ \Rightarrow5^x=25\\ \Rightarrow5^x=5^2\\ \Rightarrow x=2\)
\(b,3^{x.1}+5.3^{x.1}=162\\ \Rightarrow3^x+5.3^x=162\\ \Rightarrow6.3^x=162\\ \Rightarrow3^x=27\\ \Rightarrow3^x=3^3\\ \Rightarrow x=3\)
e: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
f: Ta có: \(x^3-6x^2+12x-19=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-11=0\)
\(\Leftrightarrow\left(x-2\right)^3=11\)
hay \(x=\sqrt[3]{11}+2\)
a) 6xy.2x3yz2=(6.2).(x.x3).(y.y).z2=12x4.y2.z2
=> Hệ số: 12; Phần biến: x4y2z2; Bậc đơn thức: 8
b) 12x3y2.(-3/4 xy2)= [12.(-3/4)]. (x3.x).(y2.y2)= -9.x4.y4
=> Hệ số: -9; Phần biến: x4.y4; Bậc đơn thức: 8
c)
\(\dfrac{1}{5}x^3y.\left(-5x^4yz^3\right)=\left[\dfrac{1}{5}.\left(-5\right)\right].\left(x^3.x^4\right).\left(y.y\right).z^3\\ =-x^7y^2z^3\)
=> Hệ số: -1; Phần biến: x7y2z3; Bậc đơn thức: 12
d) \(-\dfrac{3}{8}x^3y^2z.\left(4x^2yz\right)^3=\left[-\dfrac{3}{8}.4^2\right].\left(x^3.x^{2.3}\right).\left(y^2.y\right).\left(z.z^3\right)=-6.x^9y^3z^4\)
=> Hệ số: -6; Phần biến: x9y3z4; Bậc đơn thức: 16
Ta có: 2022 là một số chẵn nên (x+y)(x-y) chia hết cho 2 tức là (x+y) hoặc (x-y) chia hết cho 2.
Khi đó x và y cùng tính chẵn lẻ (cùng chẵn hoặc cùng lẻ) suy ra x+y và x-y đều chia hết cho 2.
Nên tích (x+y)(x-y) chia hết cho 4 mà 2022 không chia hết cho 4 nên không có x,y thỏa mãn bài toán
\(a,\dfrac{3}{7}-x=\dfrac{1}{2}x-3\)
\(\Rightarrow-x-\dfrac{1}{2}x=-3-\dfrac{3}{7}\)
\(\Rightarrow-\dfrac{3}{2}x=-\dfrac{24}{7}\)
\(\Rightarrow x=-\dfrac{24}{7}:\left(-\dfrac{3}{2}\right)\)
\(\Rightarrow x=\dfrac{16}{7}\)
\(b,5x-\dfrac{2}{3}=\dfrac{5}{3}-2x\)
\(\Rightarrow5x+2x=\dfrac{5}{3}+\dfrac{2}{3}\)
\(\Rightarrow7x=\dfrac{7}{3}\)
\(\Rightarrow x=\dfrac{7}{3}:7\)
\(\Rightarrow x=\dfrac{1}{3}\)
#Toru
a: 3/7-x=1/2x-3
=>-3/2x=-3+3/7
=>-1/2x=-1+1/7=-6/7
=>1/2x=6/7
=>x=6/7*2=12/7
b: =>5x+2x=5/3+2/3
=>7x=7/3
=>x=1/3
a: Ta có: \(7x+25=144\)
\(\Leftrightarrow7x=119\)
hay x=17
b: Ta có: \(33-12x=9\)
\(\Leftrightarrow12x=24\)
hay x=2
c: Ta có: \(128-3\left(x+4\right)=23\)
\(\Leftrightarrow3\left(x+4\right)=105\)
\(\Leftrightarrow x+4=35\)
hay x=31
d: Ta có: \(71+\left(726-3x\right)\cdot5=2246\)
\(\Leftrightarrow5\left(726-3x\right)=2175\)
\(\Leftrightarrow726-3x=435\)
\(\Leftrightarrow3x=291\)
hay x=97
e: Ta có: \(720:\left[41-\left(2x+5\right)\right]=40\)
\(\Leftrightarrow41-\left(2x+5\right)=18\)
\(\Leftrightarrow2x+5=23\)
\(\Leftrightarrow2x=18\)
hay x=9
Bài 2:
a: Ta có: \(2^{x+1}\cdot3^y=12^x\)
\(\Leftrightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Bài 1:
a: ĐKXĐ: \(x+4\ne0\)
=>\(x\ne-4\)
b: ĐKXĐ: \(2x-1\ne0\)
=>\(2x\ne1\)
=>\(x\ne\dfrac{1}{2}\)
c: ĐKXĐ: \(x\left(y-3\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)
d: ĐKXĐ: \(x^2-4y^2\ne0\)
=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)
=>\(x\ne\pm2y\)
e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)
Bài 2:
a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)
b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)
\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)
\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)
\(=\dfrac{x+y}{x-y}\)
c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)
\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)
\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)
\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)
\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)
g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)
\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{x+4}{x+2}\)
A) 5^x +5^x+2= 650 . 5^x+5^x.5^2=650 . 5^x .( 1+25) =650 . 5^x.26=650 . x= 650:26=25 ( mình trình bày hơi vắng tắt nhưng khi trình bày vào tập thì bạn phải thêm ý đầy đủ nha ^^. GOOD LUCK!)
5x + 5x+2 = 650
5x.(1+52) = 650
5x.26 = 650
=> 5x = 25 = 52
=> x = 2
2x+1 . 3y = 12x
2x.2.3y = 12x
=> 2.3y = 6x
=> 6.3y-1 = 6x
=> 3y-1 = 6x-1
Vì 6 > 3
=> 6x-1 > 3y-1
Dấu "=" xảy ra <=> 6x-1 = 3y-1 = 1
=> x - 1 = y - 1 = 0
=> x = y = 1