K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

\(a,x^4+4x^2-5\)

\(=x^4+4x^2+4-9\)

\(=\left(x^2+2\right)^2-3^2\)

\(=\left(x^2+5\right)\left(x^2-1\right)\)

\(4x^4+4x^2+1=\left(2x^2+1\right)^2\)

\(9x^4-6x^2+1=\left(3x^2-1\right)^2\)

\(\dfrac{x^2}{9}-\dfrac{2}{3}x+1=\left(\dfrac{x}{3}+1\right)^2\)

\(x^2-25=\left(x-5\right)\left(x+5\right)\)

1) \(x^2+2xy+y^2-x-y-12\)

\(\left(x+y\right)^2-\left(x+y\right)-12\)

Đặt \(x+y=z\) (đặt ẩn phụ)

\(\Rightarrow z^2-z-12\)

\(=z^2+3z-4z-12\)

\(=z\left(z+3\right)-4\left(z+3\right)\)

\(=\left(z+3\right)\left(z-4\right)\)

Khi đó: \(\left(x+y+3\right)\left(x+y-4\right)\)

#HuyenAnh

30 tháng 9 2016

sai đề thì sửa dùm mik nhé

1 tháng 10 2016

giúp mik bài này với

CẦN GẤP

2 tháng 7 2019

a) a4 + a2 - 2

a4 + 2a2 - a2 - 2

a2.( a2 + 2 ) - ( a2 + 2 )

( a2 - 1 ).( a2 + 2 )

( a + 1 ).( a - 1 ).( a2 +2 )

b) x4 + 4x2 - 5

x4 + 5x2 - x2 - 5

x2.( x2 + 5 ) - ( x2 + 5 )

( x2 - 1 ).( x2 + 5 )

( x + 1 ).( x - 1 ).( x2 + 5 )

c) x3 - 19x - 30

x3 + 2x2 - 2x2 + 4x - 15x - 30

x2( x + 2 ) - 2x.( x + 2 ) - 15.( x + 2 )

( x + 2 ).( x2 - 2x - 15 )

d) x3 - 7x - 6

x3 - 3x2 + 3x2 - 9x + 2x - 6

x2.( x - 3 ) + 3x.( x - 3 ) + 2.( x - 3 )

( x - 3 ).( x2 + 3x +2 )

( x - 3 ).( x2 + 2x + x + 2 )

( x - 3 ).( x.( x + 2 ) + ( x + 2 )

( x + 1 ).( x + 2 ).( x - 3 )

e) x3 - 5x2 - 14x

x3 - 7x2 + 2x2 - 14x

x2.( x - 7 ) + 2x.( x - 7 )

( x - 7 ).( x2 + 2x )

x.( x + 2 ).( x - 7 )

27 tháng 5 2016

a) 4x*(x+y)*(x+y+z)*(x+z)+y^2+z^2

=4*x*y*z^2+4*x^2*z^2+z^2+4*x*y^2*z+12*x^2*y*z+8*x^3*z+4*x^2*y^2+y^2+8*x^3*y+4*x^4

b) x^3-19x-30

=(x-5)*(x+2)*(x+3)

21 tháng 3 2016

het thoirui pan oi

6 tháng 10 2019

\(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)

\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)

\(+\left(x^7-x^5+x^4-x^2+x\right)\)

\(+\left(x^6-x^4+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

6 tháng 10 2019

\(x^5+x+1\)

\(=x^5-x^2+x^2+x+1\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)