K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2019

\(A=1+5+5^2+5^3+5^4+...+5^9.\)

   \(=1+5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+5^7\left(1+5+5^2\right)\)

    \(=\left(1+5+5^2\right)\left(5+5^4+5^7\right)+1\)

\(=31\left(5+5^4+5^7\right)+1\)

Vậy A chia cho 31 dư 1 

13 tháng 5 2019

Cảm ơn bn nha Nguyễn  Xuân Anh 😀

2 tháng 12 2021
Giúp mk đi , mk đang cần gấp ! 😭😭
3 tháng 2 2016

Câu 1 :      4215,4515,4815

Câu 2:        29,59,89

Câu 3:         200340

Câu 4:        59

Câu 5:        22

2 tháng 5 2017

Nhỏ Suki giải hẳn ra đi

26 tháng 3 2018

Ta có :

A=5 + 5^2 + 5^3 + 5^4 + ....... + 5^19 + 5^20

=> Tổng A có số hạng tử là: (20 -1)/1 + 1 = 20

=> Ta có thể chia tổng A thành 6 nhóm 3 số và thừa ra ngoài 2 số

A = (5 + 5^2) + (5^3 + 5^4 + 5^5) + .......... + (5^18 + 5^19 + 5^20)

=> A = ( 5 + 25) + 5^3*(1 + 5 + 5^2) + ...... + 5^18*(1 + 5 + 5^2)

=> A = 30 + (1 + 5 + 5^2)*(5^3 + .... + 5^18)

=>A = 30 + 31*(5^3 + ....... + 5^18)

Vì 31 chia hết cho 31 nên 31*(5^3 + ..... +5^18) cùng chia hết cho 31

mà 30 chia cho 31 dư 30

=> Tổng A chia cho 31 dư 30

Vậy A chia cho 31 dư 30

26 tháng 3 2018

\(A=5+5^2+5^3\left(1+5+5^2\right)+5^6\left(1+5+5^2\right)+...+5^{18}\left(1+5+5^2\right)\)

\(A=5+25+\left(1+5+5^2\right)\left(5^3+5^6+...+5^{18}\right)\)

\(A=30+31\left(5^3+5^6+...+5^{18}\right)\)

Ta thấy \(31\left(5^3+5^6+...+5^{18}\right)⋮31\) dư 0

\(A=30+31\left(5^3+5^6+...+5^{18}\right)\div31\) dư 30