Phân tích đa thức thành nhân tử:
a, \(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
b, \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc+b^2+c^2-a^2\right)\left(2bc-b^2-c^2+a^2\right)\)
\(=\left[\left(b+c\right)^2-a^2\right]\left[a^2-\left(b-c\right)^2\right]\)
\(=\left(b+c+a\right)\left(b+c-a\right)\left(a+b-c\right)\left(a-b+c\right)\)
b) \(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+by+ay+bx\right)\left(ax+by-ay-bx\right)\)
\(=\left(a+b\right)\left(x+y\right)\left(a-b\right)\left(x-y\right)\)
c) \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5+2ab+4\right)\left(a^2+b^2-5-2ab-4\right)\)
\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)
\(=\left(a+b+1\right)\left(a+b-1\right)\left(a-b+3\right)\left(a-b-3\right)\)
d) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)
\(=\left(4x^2-3x-18+4x^2+3x\right)\left(4x^2-3x-18-4x^2-3x\right)\)
\(=\left(8x^2-18\right)\left(-6x-18\right)\)
\(=\left[2\left(4x^2-9\right)\right]\left[-6\left(x+3\right)\right]\)
\(=12\left(2x+3\right)\left(2x-3\right)\left(x+3\right)\)
a) \(4x^2-1=\left(2x+1\right)\left(2x-1\right)\)
b) \(\left(x+2\right)^2-9=\left(x-1\right)\left(x+5\right)\)
c) \(\left(a+b\right)^2-\left(a-2b\right)^2\)
\(=\left(a+b-a+2b\right)\left(a+b+a-2b\right)\)
\(=3b\left(2a-b\right)\)
`a, 4x^2-1 = (2x+1)(2x-1)`
`b, (x+2)^2-9 = (x+2-3)(x+2+3) = (x-1)(x+5)`
`c, (a+b)^2-(a-2b)^2 = (a+b+a-2b)(a+b-a+2b) = (2a-b)(3b)`
a: \(x^2-2xy+y^2+3x-3y-4\)
\(=\left(x-y\right)^2+3\left(x-y\right)-4\)
\(=\left(x-y+4\right)\left(x-y-1\right)\)
`a, 4a^2 + 4a + 1 = (2a+1)^2`
`b, -3x^2 + 6xy - 3y^2`
` = -3(x-y)^2`
`c, (x+y)^2 - 2(x+y)z + z^2`
`= (x+y-z)^2`
`a, x^3 + 4x = x(x^2+4)`
`b, 6ab - 9ab^2 = 3ab(2-b)`
`c, 2a(x-1) + 3b(1-x)`
`= (2a-3b)(x-1)`
`d, (x-y)^2 - x(y-x)`
`= (x-y+x)(x-y)`
`= (2x-y)(x-y)`
\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+by+ay+bx\right)\left(ax+by-ay-bx\right)\)
\(=\left[a\left(x+y\right)+b\left(x+y\right)\right]\left[a\left(x-y\right)-b\left(x-y\right)\right]\)
\(=\left(a+b\right)\left(a-b\right)\left(x+y\right)\left(x-y\right)\)
\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left[\left(a^2+b^2-5\right)+2\left(ab+2\right)\right]\left[\left(a^2+b^2-5\right)-2\left(ab+2\right)\right]\)
\(=\left[a^2+b^2-5+2ab+4\right]\left[a^2+b^2-5-2ab-4\right]\)
\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)
\(=\left(a+b-1\right)\left(a+b+1\right)\left(a-b-3\right)\left(a-b+3\right)\)
a)
(ax+by)2 - (ay+bx)2
=(ax+by-ay-bx)(ax+by+ay+bx)
=[ a(x-y) -b(x-y)][ a(x+y) + b(x+y)]
=(a-b)(x-y)(a+b)(x+y)
b)(a2+b2-5)2 - 4(ab+2)2
=(a2+b2-5-2ab-4)(a2+b2-5+2ab+4)
=[ (a-b)2 -9][ (a+b)2 -1]
=(a-b-3)(a-b+3)(a+b-1)(a+b+1)