K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
9 tháng 8 2021

\(cos\left(x\right)-cos\left(2x\right)=sin\left(3x\right)\)

\(\Leftrightarrow-2sin\frac{3x}{2}sin\frac{-x}{2}=2sin\frac{3x}{2}cos\frac{3x}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}sin\frac{3x}{2}=0\left(1\right)\\sin\frac{x}{2}=cos\frac{3x}{2}\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow\frac{3x}{2}=k\pi\left(k\inℤ\right)\)

\(\Leftrightarrow x=\frac{2k\pi}{3}\left(k\inℤ\right)\)

\(\left(2\right)\Leftrightarrow sin\frac{x}{2}=sin\left(\frac{\pi}{2}-\frac{3x}{2}\right)\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{x}{2}=\frac{\pi}{2}-\frac{3x}{2}+k2\pi\\\frac{x}{2}=\pi-\left(\frac{\pi}{2}-\frac{3x}{2}\right)+k2\pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{2}+k2\pi\end{cases}\left(k\inℤ\right)}\)

\(\Leftrightarrow sin2x\cdot sinx-cos2x\cdot sinx+sin2x\cdot cosx+sinx\cdot cos2x=cosx\left(sinx+cosx\right)\)

=>\(sin2x\left(sinx+cosx\right)=cosx\left(sinx+cosx\right)\)

=>\(\left(sinx+cosx\right)\cdot\left(sin2x-cosx\right)=0\)

=>\(cosx\cdot\left(2sinx-1\right)\cdot\sqrt{2}\cdot sin\left(x+\dfrac{pi}{4}\right)=0\)

=>\(\left[{}\begin{matrix}cosx=0\\2sinx-1=0\\sin\left(x+\dfrac{pi}{4}\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{pi}{2}+kpi\\sinx=\dfrac{1}{2}\\x+\dfrac{pi}{4}=kpi\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{pi}{2}+kpi\\x=-\dfrac{pi}{4}+kpi\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{pi}{2}+kpi\\x=-\dfrac{pi}{4}+kpi\\x=\dfrac{pi}{6}+k2pi\\x=\dfrac{5}{6}pi+k2pi\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{pi}{2}+kpi;-\dfrac{pi}{4}+kpi;\dfrac{pi}{6}+k2pi;\dfrac{5}{6}pi+k2pi\right\}\)

b: \(\Leftrightarrow2\cdot\cos2x\cdot\cos x+2\cdot\sin x\cdot\cos2x=\sqrt{2}\cdot\cos2x\)

\(\Leftrightarrow2\cdot\cos2x\left(\sin x+\cos x\right)=\sqrt{2}\cdot\cos2x\)

\(\Leftrightarrow\sqrt{2}\cdot\cos2x\cdot\left[\sqrt{2}\cdot\sqrt{2}\cdot\sin\left(x+\dfrac{\Pi}{4}\right)-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\cos2x=0\\\sin\left(x+\dfrac{\Pi}{4}\right)=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\Pi}{2}+k\Pi\\x+\dfrac{\Pi}{4}=\dfrac{\Pi}{6}+k2\Pi\\x+\dfrac{\Pi}{4}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\)

\(\Leftrightarrow x\in\left\{\dfrac{\Pi}{4}+\dfrac{k\Pi}{2};\dfrac{-1}{12}\Pi+k2\Pi;\dfrac{7}{12}\Pi+k2\Pi\right\}\)

c: \(\Leftrightarrow2\cdot\sin2x\cdot\cos x+\sin2x=2\cdot\cos2x\cdot\cos x+\cos2x\)

\(\Leftrightarrow\sin2x\left(2\cos x+1\right)=\cos2x\left(2\cos x+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\cos2x=\sin\left(\dfrac{\Pi}{2}-2x\right)\\\cos x=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\\\\x=-\dfrac{2}{3}\Pi+k2\Pi\\x=\dfrac{2}{3}\Pi+k2\Pi\end{matrix}\right.\)

26 tháng 2 2018

Chọn D

Ta sẽ biến đổi phương trình thành dạng tích

Chú ý: có thể dùng 4 đáp án thay vào phương trình để kiểm tra đâu là nghiệm

9 tháng 12 2019

NV
17 tháng 9 2020

c/

\(\left(1+cosx\right)\left(sinx-cosx+3\right)=1-cos^2x\)

\(\Leftrightarrow\left(1+cosx\right)\left(sinx-cosx+3\right)-\left(1+cosx\right)\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1+cosx\right)\left(sinx+2\right)=0\)

\(\Leftrightarrow cosx=-1\)

\(\Leftrightarrow x=\pi+k2\pi\)

d.

\(\Leftrightarrow\left(1+sinx\right)\left(cosx-sinx\right)=1-sin^2x\)

\(\Leftrightarrow\left(1+sinx\right)\left(cosx-sinx\right)-\left(1+sinx\right)\left(1-sinx\right)=0\)

\(\Leftrightarrow\left(1+sinx\right)\left(cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=k2\pi\end{matrix}\right.\)

NV
17 tháng 9 2020

a.

\(\Leftrightarrow cosx\left[1-\left(1-2sin^2x\right)\right]-sin^2x=0\)

\(\Leftrightarrow2sin^2x.cosx-sin^2x=0\)

\(\Leftrightarrow sin^2x\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

b.

Câu b chắc chắn đề đúng chứ bạn? Vế phải ấy?

NV
28 tháng 4 2021

\(=\dfrac{1}{2}sin6x-\dfrac{1}{2}sin2x-\left(\dfrac{1}{2}sin4x-\dfrac{1}{2}sin2x\right)\)

\(=\dfrac{1}{2}sin6x-\dfrac{1}{2}sin4x\)

\(=cos5x.sinx\)

11 tháng 5 2022

gt rõ hơn được không ạ, e k hiểu lắm ạ

16 tháng 9 2017

Cảm ơn bạn nhìu nhayeu

NV
27 tháng 7 2020

\(\Leftrightarrow2cos\frac{3x}{2}.cos\frac{x}{2}=2sin\frac{3x}{2}.cos\frac{3x}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\frac{3x}{2}=0\\cos\frac{x}{2}=sin\frac{3x}{2}=cos\left(\frac{\pi}{2}-3x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{3x}{2}=\frac{\pi}{2}+k\pi\\\frac{x}{2}=\frac{\pi}{2}-3x+k2\pi\\\frac{x}{2}=3x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+\frac{k2\pi}{3}\\x=\frac{\pi}{7}+\frac{k4\pi}{7}\\x=\frac{\pi}{5}+\frac{k4\pi}{5}\end{matrix}\right.\)

loading...  loading...  loading...  loading...  loading...  loading...