(3x-33)^2014+|y-7|^2015 _<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\hept{\begin{cases}\left(3x-33\right)^{2014}\ge0\\\left|y-7\right|^{2015}\ge0\end{cases}}\)\(\Rightarrow\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}\ge0\)
Kết hợp với giả thiết chỉ có \(\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}=0\) đúng
\(\Rightarrow\hept{\begin{cases}3x-33=0\\y-7=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=11\\y=7\end{cases}}\)
Vậy...................
\(\left(3x-33\right)^{2014}-\left(\left|y-7\right|\right)^{2015}\le0\)
Ta có \(\left(3x-33\right)^{2014}\ge0\)với mọi gt \(x\in R\)
và \(\left(\left|y-7\right|\right)^{2015}\ge0\)với mọi gt \(x\in R\)
=> \(\left(3x-33\right)^{2014}-\left(\left|y-7\right|\right)^{2015}\ge0\)với mọi gt \(x\in R\)
Mà \(\left(3x-33\right)^{2014}-\left(\left|y-7\right|\right)^{2015}\le0\)
=> \(\left(3x-33\right)^{2014}-\left(\left|y-7\right|\right)^{2015}=0\)
=> \(\hept{\begin{cases}\left(3x-33\right)^{2014}=0\\\left(\left|y-7\right|\right)^{2015}=0\end{cases}}\)=> \(\hept{\begin{cases}3x-33=0\\y-7=0\end{cases}}\)=> \(\hept{\begin{cases}3x=33\\y=7\end{cases}}\)=> \(\hept{\begin{cases}x=11\\y=7\end{cases}}\)
Ta có:\(\left(3x-33\right)^{2014}\ge0,\left|y-7\right|^{2015}\ge0\Rightarrow\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}\ge0\)
Mà VP\(\le0\)
\(\Rightarrow\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}=0\)
\(\Leftrightarrow\left(3x-33\right)^{2014}=0\Leftrightarrow3x-33=0\Leftrightarrow3x=33\Leftrightarrow x=11\)
\(\Leftrightarrow\left|y-7\right|^{2015}=0\Leftrightarrow\left|y-7\right|=0\Leftrightarrow y-7=0\Leftrightarrow y=7\)
Vậy x=11;y=7
Ta có :
\(\left(3x-33\right)^{2008}+\left|y-7\right|^{2009}\le0\)
\(\Rightarrow\)\(\left(3x-33\right)^{2008}\ge0\) ( với mọi x )
\(\Rightarrow\)\(\left|y-7\right|^{2009}\ge0\) ( với mọi y )
Trường hợp 1 :
\(\left(3x-33\right)^{2008}\ge0\) ( thoã mãn )
\(\left|y-7\right|^{2009}\le0\) ( loại )
Trường hợp 2 :
\(\left(3x-33\right)^{2008}\le0\) ( loại )
\(\left|y-7\right|^{2009}\ge0\) ( thoã mãn )
Trường hợp 3 :
\(\left(3x-33\right)^{2008}=0\)
\(\Rightarrow\)\(3x-33=0\)
\(\Rightarrow\)\(3x=33\)
\(\Rightarrow\)\(x=11\)
\(\left|y-7\right|^{2009}=0\)
\(\Rightarrow\)\(y-7=0\)
\(\Rightarrow\)\(y=7\)
Vậy \(x=11\) và \(y=7\) thì \(\left(3x-33\right)^{2008}+\left|y-7\right|^{2009}=0\)
Ta có:/x-3/^2014>=0;/6+2y/^2015>=0
=>/x-3/^2014+/6+2y/^2015>=0
mà theo đề bài, /x-3/^2014+/6+2y/^2015<=0
=>/x-3/^2014=/6+2y/^2015=0
=>/x-3/=0; /6+2y/=0
=>x-3=0 =>6+2y=0
=>x=3 =>2y=-6=>y=-3
vậy x=3; y=-3
\(\left(3x-33\right)^{2014}>=0\forall x\)
\(\left|y-7\right|^{2015}>=0\forall y\)
Do đó: \(\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}>=0\forall x,y\)
mà \(\left(3x-33\right)^{2014}+\left|y-7\right|^{2015}< =0\)
nên 3x-33=0 và y-7=0
=>x=11 hoặc y=7