K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

3/8

18 tháng 12 2016

Ta có: b : a = 2, c : b = 3

\(\Rightarrow\frac{a}{1}=\frac{b}{2};\frac{b}{1}=\frac{c}{3}\)

\(\Leftrightarrow\frac{a}{1}=\frac{b}{2}=\frac{c}{6}\)

\(\Rightarrow\frac{a+b}{1+2}=\frac{b+c}{2+6}\)

\(\Rightarrow\frac{a+b}{b+c}=\frac{1+2}{2+6}=\frac{3}{8}\)

mk ko chắc đúng hay sai nữalolang

 

4 tháng 8 2023

a, a x 6 = 3 x 6 = 18

b, a + b = 4 + 2 = 6

c, b + a = 2 + 4 = 6

d, a - b = 8 - 5 = 3

e, m x n = 5 x 9 = 45

11 tháng 12 2023

a. 18

b. 6

c. 6

d. 3

e. 45

31 tháng 12 2016

Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)

\(\Rightarrow\hept{\begin{cases}a=2k\\b=3k\\c=4k\end{cases}}\)

Thay các giá trị a , b , c vào đẳng thức a3 + b3 + c3 = 792 , ta có :

\(\left(2k\right)^3+\left(3k\right)^3+\left(4k\right)^3=792\)

\(2^3.k^3+3^3.k^3+4^3.k^3=792\)

\(8.k^3+27.k^3+64.k^3=792\)

\(99.k^3=792\)

\(k^3=8=2^3\)

\(\Rightarrow k=2\)

\(\Rightarrow\hept{\begin{cases}a=2.2=4\\b=2.3=6\\c=2.4=8\end{cases}}\)

\(H=4+6+8=18\)

28 tháng 12 2016

giá trị của biểu thức bằng 0.375

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

18 tháng 12 2016

Ta có: b : a = 2 => b = 2a

c : b = 3 => c = 3b = 3*2*a = 6a

Từ đó \(\frac{a+b}{b+c}=\frac{a+2a}{2a+6a}=\frac{3a}{8a}=\frac{3}{8}\)

Vậy \(\frac{a+b}{b+c}=\frac{3}{8}\)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Thay giá trị \(x =  - 1\) và \(y =  - 2\) vào các biểu thức đã cho, ta có:

\(A =  - ( - 4x + 3y) =  - ( - 4. - 1 + 3. - 2) =  - (4 +  - 6) =  - ( - 2) = 2\).

\(B = 4x + 3y = 4. - 1 + 3. - 2 =  - 4 +  - 6 =  - 10\).

\(C = 4x - 3y = 4.( - 1) - 3.( - 2) =  - 4 -  - 6 =  - 4 + 6 = 2\).

Ta thấy 2 ≠ -2 = 2. Do vậy, khi thay giá trị \(x =  - 1\) và \(y =  - 2\) vào các biểu thức đã cho ta thấy giá trị của các biểu thức A và C bằng nhau.

Vậy bạn Bình nói đúng.

19 tháng 6 2023

a) Có:

 \(a+b+c=0\\\Leftrightarrow\left(a+b+c\right)^2=0\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\\ \Leftrightarrow2ab+2bc+2ca=-1\\ \Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\\ \Leftrightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}-0=\dfrac{1}{4} \)

19 tháng 6 2023

câu (b) cho đa thức P (x) = cái gì?