Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)
\(\Rightarrow\hept{\begin{cases}a=2k\\b=3k\\c=4k\end{cases}}\)
Thay các giá trị a , b , c vào đẳng thức a3 + b3 + c3 = 792 , ta có :
\(\left(2k\right)^3+\left(3k\right)^3+\left(4k\right)^3=792\)
\(2^3.k^3+3^3.k^3+4^3.k^3=792\)
\(8.k^3+27.k^3+64.k^3=792\)
\(99.k^3=792\)
\(k^3=8=2^3\)
\(\Rightarrow k=2\)
\(\Rightarrow\hept{\begin{cases}a=2.2=4\\b=2.3=6\\c=2.4=8\end{cases}}\)
\(H=4+6+8=18\)
Ta có: b : a = 2 => b = 2a
c : b = 3 => c = 3b = 3*2*a = 6a
Từ đó \(\frac{a+b}{b+c}=\frac{a+2a}{2a+6a}=\frac{3a}{8a}=\frac{3}{8}\)
Vậy \(\frac{a+b}{b+c}=\frac{3}{8}\)
Thay giá trị \(x = - 1\) và \(y = - 2\) vào các biểu thức đã cho, ta có:
\(A = - ( - 4x + 3y) = - ( - 4. - 1 + 3. - 2) = - (4 + - 6) = - ( - 2) = 2\).
\(B = 4x + 3y = 4. - 1 + 3. - 2 = - 4 + - 6 = - 10\).
\(C = 4x - 3y = 4.( - 1) - 3.( - 2) = - 4 - - 6 = - 4 + 6 = 2\).
Ta thấy 2 ≠ -2 = 2. Do vậy, khi thay giá trị \(x = - 1\) và \(y = - 2\) vào các biểu thức đã cho ta thấy giá trị của các biểu thức A và C bằng nhau.
Vậy bạn Bình nói đúng.
a) \(A+B=-12x^2y^4-6x^2y^4=-18x^2y^4\)
\(A+C=-12x^2y^4+9x^2y^4=-3x^2y^4\)
\(B+C=-6x^2y^4+9x^2y^4=3x^2y^4\)
a) A+B=−12x2y4−6x2y4=−18x2y4A+B=−12x2y4−6x2y4=−18x2y4
A+C=−12x2y4+9x2y4=−3x2y4A+C=−12x2y4+9x2y4=−3x2y4
B+C=−6x2y4+9x2y4=3x2y
5. Ta có b = 1 – a, do đó M = a\(^3\) + (1 – a)\(^3\) = 3(a – 1⁄2)2 + 1⁄4 ≥ 1⁄4 . Dấu “=” xảy ra khi a = 1⁄2 .
Vậy min M = 1⁄4 => a = b = 1⁄2 .
6. Đặt a = 1 + x => b 3 = 2 – a\(^3\) = 2 – (1 + x)\(^3\) = 1 – 3x – 3x\(^2\)– x\(^3\) ≤ 1 – 3x + 3x\(^2\)– x\(^3\) = (1 – x)\(^3\)
Suy ra : b ≤ 1 – x. Ta lại có a = 1 + x, nên : a + b ≤ 1 + x + 1 – x = 2.
Với a = 1, b = 1 thì a\(^3\) + b\(^3\) = 2 và a + b = 2. Vậy max N = 2 khi a = b = 1.
7. Hiệu của vế trái và vế phải bằng (a – b)\(^2\)(a + b).
3/8
Ta có: b : a = 2, c : b = 3
\(\Rightarrow\frac{a}{1}=\frac{b}{2};\frac{b}{1}=\frac{c}{3}\)
\(\Leftrightarrow\frac{a}{1}=\frac{b}{2}=\frac{c}{6}\)
\(\Rightarrow\frac{a+b}{1+2}=\frac{b+c}{2+6}\)
\(\Rightarrow\frac{a+b}{b+c}=\frac{1+2}{2+6}=\frac{3}{8}\)
mk ko chắc đúng hay sai nữa