1.gia tri nho nhat cua x^2-x+1
2. gia tri nho nhat cua x^2+10x+2041
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì |x-3| luôn lớn bằng 0 với mọi x
=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x
=> A luôn lớn bằng 100
Dấu "=" xảy ra <=> |x-3| = 0
=> x - 3 = 0
=> x = 3
Vậy Min A = -100 <=> x = 3
Ta có |x - 3| > 0
=> |x - 3| + (-100) > - 100
hay A > 100
Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3
quy đồng nhân cả tử với mẫu với 2007 ta có
A=\(\frac{2007x^2-2.2007x+2007^2}{2007^2x^2} =\frac{x^2-2.2007x+2007^2+2006x^2}{2007^2x^2}=\frac{(x-2007)^2+2006x^2}{2007^2x^2} \)
=\(\frac{(x-2007)^2}{2007^2x^2}+\frac{2006x^2}{2007^2x^2}=\frac{2006}{2007^2}+ \frac{(x-2007)^2}{2007^2x^2} \)
Min A=\(\frac{2006}{2007^2}\)<=>x=2007
Ta có: \(3\left(2x+9\right)^2\ge0\) với \(x\in R\) , dấu bằng xảy ra \(\Leftrightarrow x=-\frac{9}{2}\)
=> \(3\left(2x+9\right)^2-1\ge-1\) với \(x\in R\) , dấu bằng xảy ra \(\Leftrightarrow x=-\frac{9}{2}\)
Vậy GTNN của \(3\left(2x+9\right)^2-1\) là -1 với \(x=-\frac{9}{2}\)
GTLN :
\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)
Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1
GTNN :
\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)
\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)
Ta có: (-3-x)2\(\ge\)0 với mọi x
=>(-3-x)2+5 \(\ge\)0+5 với mọi x
=>A\(\ge\)5 với mọi x
Vậy A Min = 5 khi x=-3
Bài 1:
\(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" khi \(x=\frac{1}{2}\)
Vậy \(Min=\frac{3}{4}\) khi \(x=\frac{1}{2}\)
Bài 2:
\(x^2+10x+2041=x^2+10x+25+2016\)
\(=\left(x^2+10x+25\right)+2016\)
\(=\left(x+5\right)^2+2016\ge2016\)
Dấu "=" khi \(x=-5\)
Vậy \(Min=2016\) khi \(x=-5\)
nhìn là bit tu lam