Cho tam giác ABC vuông tại B. Tia phân giác của góc C cắt cạnh AB tại E. Trên cạnh AC lấy điểm F sao cho CF=CB. Tia EF cắt tia CB tại D.CMR:tam giác BCE=tamgiác FCE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔCBE và ΔCFE có
CB=CF
\(\widehat{BCE}=\widehat{FCE}\)
CE chung
DO đó; ΔCBE=ΔCFE
Suy ra: EB=EF và \(\widehat{CBE}=\widehat{CFE}=90^0\)
hay EF\(\perp\)AC
-Câu 1,2 của bài này na ná với nhau á, bạn tham khảo:
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-tren-canh-bc-lay-d-d-khong-trung-b-va-bdbc2-tren-tia-doi-cua-tia-cb-lay-e-sao-cho-bdce-cac-duong-vuong-goc-voi-bc-ke-tu-d-va-e-cat-duong-thang-ab-va-ac-lan-luot-tai.4784314158042
c. -Kẻ tia phân giác của \(\widehat{BAC}\) cắt đường vuông góc với MN (tại I) tại F.
-Xét △ABF và △ACF:
\(AB=AC\) (△ABC cân tại A).
\(\widehat{BAF}=\widehat{CAF}\) (AF là tia phân giác của \(\widehat{BAC}\))
AF là cạnh chung.
\(\Rightarrow\)△ABF=△ACF (c-g-c).
\(\Rightarrow BF=CF\) (2 cạnh tương ứng).
\(\widehat{ABF}=\widehat{ACF}\) (2 góc tương ứng).
-Xét △MIF và △NIF:
\(MI=IN\left(cmt\right)\)
\(\widehat{MIF}=\widehat{NIF}=90^0\)
IF là cạnh chung.
\(\Rightarrow\)△MIF=△NIF (c-g-c).
\(\Rightarrow MF=NF\) (2 cạnh tương ứng).
-Xét △BMF và △CNF:
\(BM=NC\)(△MBD=△NCE)
\(MF=NF\left(cmt\right)\)
\(BF=CF\left(cmt\right)\)
\(\Rightarrow\)△BMF=△CNF (c-c-c).
\(\Rightarrow\widehat{MBF}=\widehat{NCF}\) (2 cạnh tương ứng).
Mà \(\widehat{MBF}=\widehat{MCF}\)(cmt)
\(\Rightarrow\widehat{NCF}=\widehat{MCF}\)
Mà \(\widehat{NCF}+\widehat{MCF}=180^0\) (kề bù)
\(\Rightarrow\widehat{NCF}=\widehat{MCF}=\dfrac{180^0}{2}=90^0\)
\(\Rightarrow\)AB⊥BF tại B.
\(\Rightarrow\) F là giao của đường vuông góc với AB tại B và tia phân giác của góc \(\widehat{BAC}\).
\(\Rightarrow\)F cố định.
-Vậy đường thẳng vuông góc với MN luôn đi qua điểm cố định khi D thay đổi trên đoạn BC.
a) Ta có \(\widehat{BAE}=\widehat{CAE}=\widehat{\dfrac{CAB}{2}}\)
hay \(\widehat{BAE}=\widehat{FAE}\)
Xét \(\Delta ABEvà\Delta AFEcó\)
\(AB=AF\) (giả thiết )
\(\widehat{BAE}=\widehat{FAE}\) (chứng minh trên)
\(AE\) cạnh chung
\(\Rightarrow\Delta ABE=\Delta AFE\left(c-g-c\right)\)
vậy \(\Delta ABE=\Delta AFE\)
b) ta có \(\Delta ABE=\Delta AFE\) (chứng minh câu a)
\(\Rightarrow\widehat{EBA}=\widehat{EFA}\) (2 góc tương ứng)
mà\(\widehat{EAB}=90độ\) \(\Rightarrow\widehat{EFA}=90độ\)
\(\Rightarrow EF\perp AC\)
vậy \(EF\perp AC\)
c)ta có \(\Delta EAB=\Delta EFA\) (chứng minh câu a)
\(\Rightarrow EB=EF\)
Xét \(\Delta CEFvà\Delta MEBcó\)
\(EF=EB\) (chứng minh trên)
\(\widehat{CEF}=\widehat{MEB}\) (2 góc đối đỉnh )
\(CE=ME\) (giả thiết )
\(\Rightarrow\Delta CEF=\Delta MEB\left(c-g-c\right)\)
\(\Rightarrow\widehat{EBM}=\widehat{EMC}\) mà \(\widehat{EMC}=90độ\) (vì\(EF\perp AC\))
\(\Rightarrow\widehat{EBM}=90độ\) mà \(\widehat{EBA}=90độ\)
\(\Rightarrow\widehat{EBM}+\widehat{EBA}=180độ\)
\(\Rightarrow\text{B,A,M thẳng hàng}\)
vậy\(\text{B,A,M thẳng hàng}\)
\(\Delta ABEvà\Delta AFEcó\)\(\Rightarrow EF\perp AC\)\(\Rightarrow EF\perp AC\)
\(\Rightarrow\widehat{EBA}=\widehat{EFA}\)
Xét ΔBCE và ΔFCE có
CB=CF
\(\widehat{BCE}=\widehat{FCE}\)
CE chung
Do đó: ΔBCE=ΔFCE