Cho hình thang ABCD(AB//CD).Biết tia phân giác C^ đi qua trung điểm M của AD.CMR:
a.BMC^ vuong
b.BC=AB+CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi tia phân giác góc C là CM và N là trung điểm của BC.
Do MN là đường trung bình của hình thang ABCD nên AB // MN // DC.
Suy ra \(\widehat{NMC}=\widehat{NCM}\).
Do MC là tia phân giác góc C nên \(\widehat{MND}=\widehat{NCM}\).
Suy ra \(\widehat{NMC}=\widehat{NCM}\).
Vậy tam giác NMC cân tại N hay MN = NC.
mà N là trung điểm của BC nên BN = NC.
Suy ra BN = MN = NC. Vậy tam giác MBC cân tại M.
b) Theo tính chất của đường trung bình của tam giác 2MN = AB + DC.
Mà BC = BN + NC = 2NC = 2MN.
Suy ra BC = AB + CD.
a: Xét ΔABE và ΔFCE có
góc EBA=góc ECF
EB=EC
góc BEA=góc CEF
=>ΔABE=ΔFCE
=>EA=EF
=>E là trung điểm của AF
b: Xét ΔDAF có
DE vừa là phân giác, vừa là trung tuyến
=>ΔDAF cân tại D
=>DA=DF=DC+CF=DC+AB
c: góc BAE=góc AFD
=>góc BAE=góc DAE
=>AE là phân giác góc DAB
Kẻ F la trung điểm AD
\(\left\{{}\begin{matrix}AF=FD\\BE=EC\end{matrix}\right.\Rightarrow EF\) là đtb hthang ABCD
\(\Rightarrow EF//AB//CD;2EF=AB+CD\left(1\right)\)
\(\left\{{}\begin{matrix}\widehat{D_2}=\widehat{E_1}\left(so.le.trong\right)\\\widehat{D_1}=\widehat{D_2}\left(t/c.phân.giác\right)\end{matrix}\right.\Rightarrow\widehat{D_1}=\widehat{E_1}\Rightarrow\Delta DEF.cân\Rightarrow DF=EF\)
Mà \(DF=\dfrac{1}{2}AD\left(F.là.trung.điểm.AD\right)\Rightarrow EF=\dfrac{1}{2}AD\)
\(\Rightarrow2EF=AD\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow AD=AB+CD\)
\(2,EF=\dfrac{1}{2}AD\Rightarrow\Delta AED\) vuông tại E
\(\Rightarrow\widehat{A_1}+\widehat{D_1}=90^0\)
Mà \(\widehat{D_1}+\widehat{E_2}=\widehat{E_1}+\widehat{E_2}=90^0\)
\(\Rightarrow\widehat{A_1}=\widehat{E_2}\left(3\right)\)
Mà \(AB//EF\Rightarrow\widehat{E_2}=\widehat{A_2}\left(4\right)\)
\(\left(3\right)\left(4\right)\Rightarrow\widehat{A_1}=\widehat{A_2}\Rightarrow AE\) là p/g \(\widehat{DAB}\)