cho góc xoy trên tia Ox lấy điểm B,Dsao cho OB>OD trên tia Oy lấy điểm E,Csao cho OC>OEvà OD=OE, OC=OBgọi K là giao điểm của BE và CD. CM DK=KE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔOBC và ΔOAD , có :
góc O chung
OB = OA ( gt )
OC = OD ( gt )
=> ΔOBC = ΔOAD ( c.g.c )
=> AD = BC ( 2 cạnh tương ứng ) ( đpcm )
=> góc OCB = góc ODA ( 2 góc tương ứng )
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{O}\) chung
OD=OC
Do đó: ΔOAD=ΔOBC
Suy ra: AD=BC
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{AOD}\) chung
OD=OC
Do đó: ΔOAD=ΔOBC
Suy ra: AD=BC
a: Xét ΔOAD và ΔOCB có
OA=OC
góc O chung
OD=OB
=>ΔOAD=ΔOCB
b: Xét ΔMAB và ΔMCD co
góc MAB=góc MCD
AB=CD
góc MBA=góc MDC
=>ΔMAB=ΔMCD
c: ΔMAB=ΔMCD
=>MA=MC
Xét ΔOAM và ΔOCM co
OA=OC
AM=CM
OM chung
=>ΔOAM=ΔOCM
=>góc AOM=góc COM
=>OM là phân giác của góc BAC
ĐK: xOy khác 180o
Ta có hình vẽ:
Xét Δ DOC và Δ EOB có:
OD = OE (gt)
O là góc chung
OC = OB (gt)
Do đó, Δ DOC = Δ EOB (c.g.c)
=> CD = BE (2 cạnh tương ứng)
DCO = EBO (2 góc tương ứng)
ODC = OEB (2 góc tương ứng)
Mà ODC + BDC = 180o (kề bù)
OEB + BEC = 180o (kề bù)
nên BDC = BEC
Có: OC = OB (gt)
OD = OE (gt)
=> OC - OE = OB - OD
=> EC = BD
Xét Δ DBK và Δ ECK có:
DBK = ECK (cmt)
BD = EC (cmt)
BDK = CEK (cmt)
Do đó, Δ DBK = Δ ECK (g.c.g)
=> DK = KE (2 cạnh tương ứng) (đpcm)