Tìm các số tự nhiên n sao cho :
a) n2 + 2n + 6 chia hết cho n + 4
b) n2 + n + 1 chia hết cho n + 1
(mình đang cần gấp )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3
ta có
mà
nếu ( thỏa mãn )
nếu ( thỏa mãn )
vậy
b)Ta có:
4n+ 3⋮⋮ 2n+ 1.
Ta có: 2n+ 1⋮⋮ 2n+ 1.
=> 2( 2n+ 1)⋮⋮ 2n+ 1.
=> 4n+ 2⋮⋮ 2n+ 1.
Mà 4n+ 3⋮⋮ 2n+ 1.
=>( 4n+ 3)-( 4n+ 2)⋮⋮ 2n+ 1.
=> 4n+ 3- 4n- 2⋮⋮ 2n+ 1.
=> 1⋮⋮ 2n+ 1.
=> n= 1.
Vậy n= 1.
Tick cho mình nha!
Ta có: 3n+2=3n-3+2+3
Vì (n-1) nên 3(n-1) ⋮ (n-1)
Do đó(3n+2) ⋮ (n-1) khi 5 ⋮ (n-1)
=>(n-1)ϵ Ư(5)={-1;-5;1;5}
=>n ϵ {2;6} vì n-1=1=>n=2
n-1=5=>n=6
Vậy n={2;6}
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
cách khác : a/ n + 6 = (n + 2) + 4 chia het cho n + 2 => 4 chia het cho n + 2 => n + 2 la uoc cua 4
=>ma n + 2 >=2 nen ta co hai truong hop
n + 2 = 4 => n = 2;
n + 2 = 2 => n = 0,
Vay n = 2 ; 0.
b/ Tuong tu cau a
c/ (3n + 1) Chia het cho 11 - 2n => [2(3n + 1) + 3(11 - 2n)] chia het cho 11 - 2n
=> 35 chia het cho 11 - 2n =>
+)11 - 2n = 1 => n = 5
+)11 - 2n = 5 => n = 3
+)11 - 2n = 7 => n = 2
+)11 - 2n = 35 => n < 0 (loai)
+)11 - 2n = -1 => n = 6
+)11 - 2n = - 5 => n = 8
+)11 - 2n = -7 => n = 9
+)11 - 2n = -35 => n=23
Vay : n = 2;3;5;6;8;9;23
d/ B = (n2 + 4):(n + 1) = [(n +1)(n - 1) + 5]:(n + 1) = n - 1 + 5/(n +1)
Do n2 + 4 chia het cho n + 1 => 5 chia het cho n +1 => n = 0;4.
a) n+6 chia hết cho n+2=> n+2 là ước của n+6=>n+2 là Ư(4)={-4,-2,-1,1,2,4}
n+2=-4=>n=-6
n+2=-2=>n=-4
n+2=-1=>n=-3
n+2=1=>n=-1
n+2=2=>n=0
n+2=4=>n=2
vậy x thuộc {-6,-4,-3,-1,0,2}
b) tương tự
c,Ta có: \(n^2+n+1⋮n+1\)
\(\Rightarrow\left(n^2+n\right)+1⋮n+1\)
\(\Rightarrow n\left(n+1\right)+1⋮n+1\)
\(\Rightarrow1⋮n+1\) (vì n(n+1)đã chia hết cho n+1)
\(\Rightarrow n+1=1\Rightarrow n=0\)