K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

DO đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)

c: Ta có: ΔBAE cân tại B

mà BI là đường phân giác

nên BI vừa là đường cao vừa là đường trung tuyến

=>I là trung điểm của AE và BD\(\perp\)AE

=>AI=EI

21 tháng 12 2021

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

21 tháng 12 2021

b, Ta có : góc BAD = góc BED=90 độ (hai góc tương ứng)

=> góc BED là góc V

Ta có ; DA=DE (hai cạnh tương ứng)

28 tháng 1 2022

a) Xét △ AED có AE=AD nến △AED cân tại A

\(\widehat{AED}=\widehat{ADE}\) ⇒\(\widehat{DEB}=\widehat{EDC}\) 

△ABC cân ⇒AB=AC mà AE=AD⇒EB=DC

Xét △DEB và △EDC có :

\(\widehat{DEB}=\widehat{EDC}\left(cmt\right)\)

ED : cạnh chung

EB=DC \(\left(cmt\right)\) 

Do đó : △DEB = △EDC \(\left(c.g.c\right)\) 

Nên \(\widehat{EBD}=\widehat{DCE}\) hay \(\widehat{ABD}=\widehat{ACE}\) 

b) △ABC cân ⇒\(\widehat{ABC}=\widehat{ACB}\) mà \(\widehat{ABD}=\widehat{ACE}\) (câu a) ⇒\(\widehat{IBC}=\widehat{ICB}\) 

Vậy △IBC cân tại I

c) Xét △AIB và △AIC có :

AB=AC(gt)

\(\widehat{ABD}=\widehat{ACE}\) (câu a)

BI=CI(vì △IBC cân tại I)

Do đó :△AIB=△AIC\(\left(c.g.c\right)\) 

\(\widehat{BAI}=\widehat{CAI}\) ⇒ AI là tia phân giác \(\widehat{BAC}\) 

d) Xét △AED và △ABC có :

A : chung 

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\) 

Nên △AED đồng dạng △ABC \(\left(c.g.c\right)\) 

\(\widehat{AED}=\widehat{ABC}\) ⇒ ED//BC

Vì AI là đường phân giác của △AED mà △AED cân nên AI cũng là đường cao ⇒AI⊥ED lại có : ED//BC ⇒AI⊥BC

e) AI⊥BC (AI là đường cao tam giác ABC) mà △ABC cân nên AI cũng là đường trung tuyến ⇒ AI là đường trung trực của BC

 

 

28 tháng 1 2022

a, Xét tam giác ABD và tam giác ACE ta có : 

^A _ chung 

^AB = AC ( gt ) 

AD = AE ( gt )

Vậy tam giác ABD = tam giác ACE ( g.c.g )

b, => ^ABD = ^ACE ( 2 góc tương ứng ) 

mà tam giác ABC cân tại => ^B = ^C 

=> ^B - ^ABD = ^DBC 

=> ^C - ^ACE = ^ECB 

=> ^DBC = ^ECB 

Xét tam giác IBC có : ^DBC = ^ECB 

nên IBC là tam giác cân tại I

c, Xét tam giác ABI và tam giác ACI ta có : 

^ABI = ^ACI ( cmt )

AB = AC ( gt) 

IA _ chung 

Vậy tam giác ABI = tam giác ACI ( c.g.c ) 

=> ^BAI = ^CAI ( 2 góc tương ứng )

Vậy AI là phân giác ^BAC 

d, Ta có : \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)=> ED // BC ( Ta lét đảo )

mà AI là phân giác của tam giác ABC cân tại A

=> AI đồng thời là đường cao 

=> AI vuông BC ; ED // BC (cmt)

=> AI vuông ED 

e, Xét tam giác ABC cân tại A

AI là đường cao, phân giác 

đồng thời AI là đường trung trực đoạn BC 

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE
=>D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

b: Sửa đề: AF=EC

Ta có: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó;ΔDAF=ΔDEC

=>AF=EC

c: Sửa đề: CM AE//CF

Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF
d: Sửa đề: I là trung điểm của FC

Ta có: IF=IC

=>I nằm trên đường trung trực của CF(3)

Ta có: DF=DC(ΔDAF=ΔDEC)

=>D nằm trên đường trung trực của CF(4)

ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(5)

Từ (3),(4),(5) suy ra B,D,I thẳng hàng

23 tháng 1

Help me

24 tháng 4 2022
24 tháng 4 2022

=BC 

Đề sai rồi bạn

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: AD=ED

b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

c: Ta có: ΔADF=ΔEDC

nên DF=DC và AF=EC

Ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BC=BF

hay B nằm trên đường trung trực của CF(1)

Ta có: DF=DC

nên D nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra BD\(\perp\)CF

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

a: Xét ΔBAD và ΔBKD có 

BA=BK

\(\widehat{ABD}=\widehat{KBD}\)

BD chung

Do đó: ΔBAD=ΔBKD

Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)

hay DK\(\perp\)BC

b: Xét ΔBEC có BE=BC

nên ΔBEC cân tại B

mà BI là đường phân giác

nên BI là đường cao