tìm a,b biết
a.b = 1024 BCNN (a,b) = 128
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số cần tìm là a;b
-Ta có:BCNN (a;b)=ab
=>ƯCLN(a;b)=ab;BCNN(a,b)=4320:360=12
-Gọi a=12m
b=12n(ƯCLN(m;n)=1
=>ab=12m.12n=4320
=>144mn=4320
=>mn=30
Ta tìm được (m;n)=(1;30) (2;15) (3;10) (5;6) (6;5) (10;3) (15;2) (30;1)
Lấy m;n nhân với 12,ta tim được (a;b)=(12;360) (14;180) (36;120) (60;72) (72;60) (120;36) (180;14) (360;12)
Lời giải:
a.
$ab=ƯCLN(a,b).BCNN(a,b)$
$\Rightarrow 9000=ƯCLN(a,b).900$
$\Rightarrow ƯCLN(a,b)=10$.
Đặt $a=10x, b=10y$ thì $x,y$ là 2 số tự nhiên nguyên tố cùng nhau.
$BCNN(a,b)=10xy=900$
$\Rightarrow xy=90$
Vì $(x,y)=1$ nên ta có các cặp $(x,y)$ sau thỏa mãn:
$(x,y)=(1,90), (2,45), (5,18), (9,10), (10,9), (18,5), (45,2), (90,1)$
Từ đây bạn dễ dàng tìm được $a,b$
b.
$ƯCLN(a,b)=ab:BCNN(a,b)=360:60=6$
Đặt $a=6x, b=6y$ với $x,y$ là stn nguyên tố cùng nhau.
$\Rightarrow BCNN(a,b)=6xy=60$
$\Rightarrow xy=10$
Do $x,y$ nguyên tố cùng nhau nên:
$(x,y)=(1,10), (2,5), (5,2), (10,1)$
Từ đây dễ dàng tìm được $a,b$
Gọi hai số cần tìm là a;b
-Ta có:BCNN (a;b)=ab
=>ƯCLN(a;b)=ab;BCNN(a,b)=4320:360=12
-Gọi a=12m
b=12n(ƯCLN(m;n)=1
=>ab=12m.12n=4320
=>144mn=4320
=>mn=30
Ta tìm được (m;n)=(1;30) (2;15) (3;10) (5;6) (6;5) (10;3) (15;2) (30;1)
Lấy m;n nhân với 12,ta tim được (a;b)=(12;360) (14;180) (36;120) (60;72) (72;60) (120;36) (180;14) (360;12)
Vì ƯCLN (a,b).BCNN (a,b)=a.b nên ƯCLN (a,b) bằng:4320:360=12
= >ƯCLN (a,b)=12
+)Ta có ƯCLN (a,b)=12=>a chia hết cho 12,b chia hết cho 12
=> a=12m,b=12n và (m,n)=1
=> Có: (12m).(12n)=4320
144.mn=4320
mn=4320:144
mn=30
Vì (m,n)=1 nên ta tìm được (m,n)=(1;30) (30;1) (2;15) (15;2) (3;10) (10;3) (5;6) (6;5)
Ta lấy m,n nhân với 12 được:a,b=(12;360) (360;12) (24;180) (180;24) (36;120) (120;36) (60;72) (72;60)
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
ƯCLN(a,b)=a.b:BCNN(a,b)=>ƯCLN(a,b)=1024:128=8
Vì ƯCLN(a,b)=8=>a\(⋮\)8;b\(⋮\)8
nên ta đặt a=8.m
b=8.n
Với ƯCLN(a,b)=1
ta có :a.b=1024=>8m.8n=1024=>64mn=1024
=>mn=16
Mà ƯCLN(a,b)=1
ta có bảng sau :
Vậy (a,b)=(8;128);(128;8)