K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2021

a,x3-27+3x(x-3)

=(x-3)(x2+3x+9)+3x(x-3)

=(x-3)(x2+6x+9)

=(x-3)(x+3)2

b,5x3-7x2+10x-14

= x2(5x-7)+2(5x-7)

= (5x-7)(x2+2)

7 tháng 8 2021

a,x3-27+3x(x-3)

=(x-3)(x2+3x+9)+3x(x-3)

=(x-3)(x2+3x+9+3x)

=(x-3)(x2+6x+9)

=(x-3)(x+3)2

b,5x3-7x2+10x-14

=(5x3+10x)-(7x2+14)

=5x(x2+2)-7(x2+2)

=(x2+2)(5x-7)

22 tháng 8 2021

B1

A=11x^2-x-2

B=2(-4+x)

22 tháng 8 2021

B2

a)=(x+3)^2(x-3)

12 tháng 7 2023

\(a,=\left(5x^3+10x\right)+\left(x^4-4\right)\\ =5x\left(x^2+2\right)+\left(x^2+2\right)\left(x^2-2\right)\\ =\left(x^2+2\right)\left(x^2+5x-2\right)\\ b,=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+2xy+y-xz-yz+z^2-3xy\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(c,=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\\ d,=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\\ e,=\left(x^{10}+x^9+x^8\right)-\left(x^9+x^8+x^7\right)+\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^{10}-x^7+x^5-x^4+x^3-x+1\right)\)

a: =x^4+2x^2+5x^3+10x-2x^2-4

=(x^2+2)(x^2+5x-2)

b; =(x+y)^3+z^3-3xy(x+y)-3xyz

=(x+y+z)*(x^2+2xy+y^2-xz-yz+z^2)-3xy(x+y+z)

=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)

c: =x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1

=(x^2+x+1)(x^6-x^5+x^3-x^2+1)

25 tháng 11 2021

a) x3-10x2+21x
= x3-7x2-3x2+21x
= x2(x-7)-3x(x-7)
= (x2-3x)(x-7)
b) 3x3-7x2-20x
= x(3x2-7x-20)
= x(3x2+5x-12x-20)
= x[x(3x+5)-4(3x+5)]
= x(x-4)(3x+5)

16 tháng 11 2021

\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

16 tháng 11 2021

Câu 1

a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)

b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)

 

b: \(=2x^2-2x-5x+5\)

\(=\left(x-1\right)\left(2x-5\right)\)

8 tháng 11 2021

\(a,=x\left(x^2-4\right)+ax\left(x-2\right)\\ =x\left(x-2\right)\left(x+2\right)+ax\left(x-2\right)\\ =\left(x-2\right)\left(x^2+2x+ax\right)\\ =x\left(x+a+2\right)\left(x-2\right)\\ b,=2x^2-2x-5x+5\\ =2x\left(x-1\right)-5\left(x-1\right)\\ =\left(2x-5\right)\left(x-1\right)\\ c,=\left(x+3\right)\left(x^2-3x+9\right)+\left(x-3\right)\left(x+3\right)\\ =\left(x+3\right)\left(x^2-2x+6\right)\)

30 tháng 10 2021

a/ \(=5x\left(x^2-2x+3\right)\)

b/ \(=\left(x^2-2x\right)-\left(x-2\right)=x\left(x-2\right)-\left(x-2\right)=\left(x-1\right)\left(x-2\right)\)

30 tháng 10 2021

a) \(5x^3-10x^2+15x=5x\left(x^2-2x+3\right)\)

b) \(x^2-3x+2=x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)

Bài 1:

a: \(3x-6y=3\cdot x-3\cdot2y=3\left(x-2y\right)\)

b: \(14x^2y-21xy^2+28x^2y^2\)

\(=7xy\cdot2x-7xy\cdot3y+7xy\cdot4xy\)

\(=7xy\left(2x-3y+4xy\right)\)

c: \(10x\left(x-y\right)-8y\cdot\left(y-x\right)\)

\(=10x\left(x-y\right)+8y\left(x-y\right)\)

\(=\left(x-y\right)\left(10x+8y\right)\)

\(=\left(2\cdot5x+2\cdot4y\right)\left(x-y\right)\)

\(=2\left(5x+4y\right)\left(x-y\right)\)

bài 2:

a: Đề thiếu vế phải rồi bạn

b: \(x^3-13x=0\)

=>\(x\left(x^2-13\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\x=\pm\sqrt{13}\end{matrix}\right.\)

8 tháng 12 2023

Bài 1:

a, $3x-6y$

$=3(x-2y)$

b, $14x^2y-21xy^2+28x^2y^2$

$=7xy(2x-3y+4xy)$

c, $10x(x-y)-8y(y-x)$

$=10x(x-y)-8y[-(x-y)]$

$=10x(x-y)+8y(x-y)$

$=(x-y)(10x+8y)$

$=2(x-y)(5x+4y)$

Bài 2:

a, Đề thiếu rồi bạn nhé.

b, \(x^3-13x=0\)

\(\Rightarrow x\left(x^2-13\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{matrix}\right.\)

Bài 2:

a: =x(x^2-25)

=x(x-5)(x+5)

b: =x(x-2y)+3(x-2y)

=(x-2y)(x+3)

c: =(2x-3)(4x^2+6x+9)+2x(2x-3)

=(2x-3)(4x^2+8x+9)

2 tháng 1 2023

bài 1 đâu

3 tháng 8 2021

`(x+y)^3-x^3-y^3`

`=(x+y)^3-(x^3+y^3)`

`=(x+y)^3-(x+y)(x^2-xy+y^2)`

`=(x+y)[(x+y)^2-x^2+xy-y^2]`

`=(x+y)(x^2+2xy+y^2-x^2+xy-y^2)`

`=(x+y).3xy`

a) Ta có: \(\left(x+y\right)^3-x^3-y^3\)

\(=x^3-x^3+y^3-y^3+3x^2y+3xy^2\)

\(=3xy\left(x+y\right)\)