Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(14x^2y-21xy^2+28x^2y=7xy\left(2x-3y+4x\right)=21xy\left(2x-y\right)\)
\(x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)
\(10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=2\left(x-y\right)\left(5x+4\right)\)
\(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)
d: \(=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)
a,=5xy(x-2y)
b,=3(x+3)+(x-3)(x+3)
=(x+3)+x
c=xy(x-y)+z(x-y)
=(x-y)(xy+z)
d=7xy(2x-3y+4xy)
e,=x(x+y)-5(x+y)
= (x+y)(x-5)
f, =10x(x-y)+8(x-y)
=(x-y)(10x+8)
g,=(3x+1-x+1)(3x+1+x+1)
=2x(4x+2)
h,=x^2-3x-2x+6
= x(x-3)-2(x-3)
=(x-3)(x-2)
1, \(2x^2+4x=2x\left(x+2\right)\)
2, \(15x^3+5x^2-10x=5x\left(3x^2+x-2\right)=5x\left(x-\dfrac{2}{3}\right)\left(x+1\right)\)
3) \(5x^2\left(x-2y\right)+15x\left(x-2y\right)=\left(5x^2+15x\right)\left(x-2y\right)=5x\left(x+3\right)\left(x-2y\right)\)
4) \(3\left(x-y\right)+5x\left(y-x\right)=\left(x-y\right)\left(3-5x\right)\)
5) \(5x^2-10x=5x\left(x-2\right)\)
6) \(3x-6y=3\left(x-2y\right)\)
7) \(25x^2+5x^3+x^2y=x^2\left(25+5x+y\right)\)
8) \(14x^2y-21xy^2+28x^2y^2=7xy\left(2x-3y+4xy\right)\)
9) \(x\left(y-1\right)-y\left(y-1\right)=\left(x-1\right)\left(y-1\right)\)
10) \(10x\left(x-y\right)-8y\left(y-x\right)=\left(10x+8y\right)\left(x-y\right)=2\left(5x+4y\right)\left(x-y\right)\)
\(1,=2x\left(x+2\right)\\ 2,=5x\left(3x^2+x-2\right)\\ 3,=\left(x-2y\right)\left(5x^2+15x\right)=5x\left(x+3\right)\left(x-2y\right)\\ 4,=\left(x-y\right)\left(3-5x\right)\\ 5,=5x\left(x-2\right)\\ 6,=3\left(x-2y\right)\\ 7,=5x^2\left(5+x+y\right)\\ 8,=7xy\left(2x-3y+4xy\right)\\ 9,=\left(y-1\right)\left(x-y\right)\\ 10,=\left(x-y\right)\left(10x+8y\right)=2\left(5x+4y\right)\left(x-y\right)\)
d: \(x\left(x^2-1\right)+3\left(x^2-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
e: \(x^2-10x+25=\left(x-5\right)^2\)
g: \(x^2-64=\left(x-8\right)\left(x+8\right)\)
h: \(\left(x+y\right)^2-\left(x^2-y^2\right)\)
\(=\left(x+y\right)\left(x+y-x+y\right)\)
\(=2y\left(x+y\right)\)
i: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
k: \(x^2+2xy+y^2-25=\left(x+y-5\right)\left(x+y+5\right)\)
l: \(2xy-x^2-y^2+16\)
\(=-\left(x^2-2xy+y^2-16\right)\)
\(=-\left(x-y-4\right)\left(x-y+4\right)\)
a: \(5x-15y=5\left(x-3y\right)\)
b: \(5x^2y^2+15x^2y+30xy^2=5xy\left(xy+3x+6y\right)\)
c: \(x^3-2x^2y+xy^2-9x\)
\(=x\left(x^2-9-2xy+y^2\right)\)
\(=x\left(x-y-3\right)\left(x-y+3\right)\)
a. 12xy2 - 8x2y = 4xy . (3y - 2x)
b. 3x + 3y - x2 - xy = (3x + 3y) - (x2 + xy) = 3 . (x + y) - x . (x + y) = (x + y)(3 - x)
Bài `1:`
`a)3x^3+6x^2=3x^2(x+2)`
`b)x^2-y^2-2x+2y=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)`
Bài `2:`
`a)(2x-1)^2-25=0`
`<=>(2x-1-5)(2x-1+5)=0`
`<=>(2x-6)(2x+4)=0`
`<=>[(x=3),(x=-2):}`
`b)Q.(x^2+3x+1)=x^3+2x^2-2x-1`
`<=>Q=[x^3+2x^2-2x-1]/[x^2+3x+1]`
`<=>Q=[x^3-x^2+3x^2-3x+x-1]/[x^2+3x+1]`
`<=>Q=[(x-1)(x^2+3x+1)]/[x^2+3x+1]=x-1`
Bài 1:
a: \(3x-6y=3\cdot x-3\cdot2y=3\left(x-2y\right)\)
b: \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\cdot2x-7xy\cdot3y+7xy\cdot4xy\)
\(=7xy\left(2x-3y+4xy\right)\)
c: \(10x\left(x-y\right)-8y\cdot\left(y-x\right)\)
\(=10x\left(x-y\right)+8y\left(x-y\right)\)
\(=\left(x-y\right)\left(10x+8y\right)\)
\(=\left(2\cdot5x+2\cdot4y\right)\left(x-y\right)\)
\(=2\left(5x+4y\right)\left(x-y\right)\)
bài 2:
a: Đề thiếu vế phải rồi bạn
b: \(x^3-13x=0\)
=>\(x\left(x^2-13\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\x=\pm\sqrt{13}\end{matrix}\right.\)
Bài 1:
a, $3x-6y$
$=3(x-2y)$
b, $14x^2y-21xy^2+28x^2y^2$
$=7xy(2x-3y+4xy)$
c, $10x(x-y)-8y(y-x)$
$=10x(x-y)-8y[-(x-y)]$
$=10x(x-y)+8y(x-y)$
$=(x-y)(10x+8y)$
$=2(x-y)(5x+4y)$
Bài 2:
a, Đề thiếu rồi bạn nhé.
b, \(x^3-13x=0\)
\(\Rightarrow x\left(x^2-13\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{matrix}\right.\)