K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

a.Xét tam giác DAB và tam giác DAE , ta có :

AB = AE

A1 = A2

AD là cạnh chung

ð Tam giác DAB = tam giác DAE

ð BD = DE ( 2 cạnh tương ứng )

b.V ì tam giác DAB = tam giác DAE

=> B2 = E2 ( 2 góc tương ứng )

Ta có :

B1 + B2 = 180o ( 2 góc tương ứng )

E1 + E2 = 180o ( 2 góc tương ứng )

=> B1 = E1

Ta có :

À – AB = BF

AC-AE= EC

Biết : AE = AC ; AB = AE ( gt )

=>BF = EC

Xét tam giác BDF và tam giác EDC có :

BE = FC ( cmt )

B1 = E1( cmt )

BD = ED ( cm câu a )

=> tam giác BDF = tam giác EDC

27 tháng 11 2016

c.Vì tam giác BDF = tam giác EDC ( cmt )

=>\(\widehat{D_1}\) = \(\widehat{D_2}\) ( 2 góc tương ứng )

\(\widehat{D1}+\widehat{FDC=180^o}\) ( 2 góc kề bù )

=>\(\widehat{D_2+}\widehat{FDC}=180^o\)

=> \(\widehat{EDF=180^o}\)

=> E,D,F thẳng hàng

a: Xét ΔABD và ΔAED có

AB=AE

góc BAD=góc EAD

AD chung

=>ΔABD=ΔAED

=>BD=ED
b: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

c: Xét ΔDBF và ΔDEC có

DB=DE

góc DBF=góc DEC

BF=EC

=>ΔDBF=ΔDEC

d: AF=AC

DF=DC

=>AD là trung trực của CF

=>AD vuông góc CF

29 tháng 11 2016

THANH TRÚC GIÚP MIK GIẢI ĐỐ

25 tháng 4 2017

Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
         b) tam giacd DBM=tam giác DEC

2 tháng 6 2018

a: Xét ΔADF và ΔADC có

AD chung

\(\widehat{FAD}=\widehat{CAD}\)

AF=AC

Do đó: ΔADF=ΔADC

b: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

=>DB=DE và \(\widehat{ABD}=\widehat{AED}\)

Ta có: \(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{FBD}=\widehat{CED}\)

Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

Xét ΔDBF và ΔDEC có

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

Do đó: ΔDBF=ΔDEC

=>\(\widehat{BDF}=\widehat{EDC}\)

mà \(\widehat{EDC}+\widehat{BDE}=180^0\)(hai góc kề bù)

nên \(\widehat{BDE}+\widehat{BDF}=180^0\)

=>E,D,F thẳng hàng

c: Ta có: ΔDBF=ΔDEC

=>DF=DC

=>D nằm trên đường trung trực của CF(1)

ta có: AF=AC

=>A nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra AD là đường trung trực của CF

=>AD\(\perp\)CF

8 tháng 12 2023

a) Ta có AB = BE và tam giác ABC vuông tại A, nên ta có AB = AC. Do đó, tam giác ABC là tam giác cân tại A. Khi đó, phân giác BD cũng là đường trung tuyến của tam giác ABC, nên ta có AD = DC. 

 

Vì AB = BE, nên ta có AD = DC = DE. Vậy, ta đã chứng minh AD = DE.

 

b) Ta có AF = EC và tam giác ABC vuông tại A, nên ta có AB = AC. Do đó, tam giác ABC là tam giác cân tại A. Khi đó, phân giác BD cũng là đường trung tuyến của tam giác ABC, nên ta có BD = DC.

 

Vì AF = EC và AB = AC, nên ta có AF = BD. Từ đó, ta có tam giác AFB cân tại A và tam giác BDC cân tại D. 

 

Vì tam giác AFB cân tại A, nên góc BAF = góc BFA. Vì tam giác BDC cân tại D, nên góc BDC = góc CBD.

 

Từ đó, ta có góc BAF = góc BFA = góc BDC = góc CBD. Vậy, ta đã chứng minh BD vuông FC.

 

c) Ta đã chứng minh BD vuông FC ở câu b. Vì BD vuông FC và tam giác ABC vuông tại A, nên ta có AE // FC theo tính chất của các góc đối.

 

d) Ta đã chứng minh BD vuông FC ở câu b. Vì BD là phân giác của tam giác ABC, nên ta có AD = DE. Vì AF = EC, nên ta có AF = BD. 

 

Vậy, ta có AD = DE = AF. Từ đó, ta có ba điểm D, E, F thẳng hàng.

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

DO đó: ΔBAD=ΔBED

=>DA=DE

b: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)EB tại E

=>DE\(\perp\)BC tại E

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

Do đó: ΔDAF=ΔDEC

=>DF=DC

=>D nằm trên đường trung trực của FC(1)

Ta có:BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra BD là đường trung trực của CF

=>BD\(\perp\)CF

c: Ta có: BA=BE

=>B nằm trên đường trung trực của AE(3)

Ta có: DA=DE

=>D nằm trên đường trung trực của AE(4)

Từ (3) và (4) suy ra BD là đường trung trực của AE

=>BD\(\perp\)AE

Ta có:BD\(\perp\)AE

BD\(\perp\)FC

Do đó: AE//FC

d: Ta có; ΔDAF=ΔDEC

=>\(\widehat{ADF}=\widehat{EDC}\)

mà \(\widehat{EDC}+\widehat{EDA}=180^0\)(hai góc kề bù)

nên \(\widehat{ADF}+\widehat{ADE}=180^0\)

=>F,D,E thẳng hàng

a: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

=>DB=DE và \(\widehat{ABD}=\widehat{AED}\)

Ta có: \(\widehat{ABD}+\widehat{DBF}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{DEC}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{DBF}=\widehat{DEC}\)

Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

Xét ΔDBF và ΔDEC có

DB=DE

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

Do đó: ΔDBF=ΔDEC

b: Ta có: AB+BF=AF

AE+EC=AC

mà AB=AE và AF=AC

nên BF=EC

c: Ta có: ΔDBF=ΔDEC

=>\(\widehat{BDF}=\widehat{EDC}\)

mà \(\widehat{EDC}+\widehat{EDB}=180^0\)

nên \(\widehat{BDF}+\widehat{EDB}=180^0\)

=>E,D,F thẳng hàng

d: ta có: ΔDBF=ΔDEC

=>DF=DC

=>D nằm trên đường trung trực của FC(1)

ta có: AF=AC

=>A nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra AD là đường trung trực của CF

=>AD\(\perp\)CF

20 tháng 1

mới gần 10 năm thôi nhỉ tầm giờ chắc chủ câu này có gđ luôn r=)