ai giúp mình đi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
I have just returned from a 1-week holiday with my friends in Da Nang and Quang Ngai. We stayed most of the time in Da Nang. Then we spent the last few nights in a very picturesque and historic place called Hoi An Old Town. We had such a relaxing time on our holiday. We enjoyed some wonderful local food. It’s really delicious. The activities we enjoyed on holiday were walking, swimming and go out at night. The water is so fresh and clean, and the temperature is just refreshing – not too hot and not too cold. We went hiking in the mountains nearly for some days, which was very good for our fitness. I really enjoyed this holiday. I loved the fresh air and the scenery, and of course the food. I will certainly be going back there another year, as I think it’s one of my favourite parts of the world.
Ex 3
1 C
2 B
3 B
4 B
5 B
6 A
7 A
8 A
9 B
10 A
11 C
12 C
13 C
14 A
15 A
16 C
17 A
18 C
19 A
20 B
\(x^2-2\left(m-2\right)x+m^2+2m-3=0\left(1\right)\)
Để phương trình có hai nghiệm phân biệt thì Δ' > 0
\(\Rightarrow\left(m-2\right)^2-m^2-2m+3>0\Leftrightarrow m^2-4m+4-m^2-2m+3>0\Leftrightarrow-6m+7>0\Leftrightarrow m< \dfrac{7}{6}\)\)
Theo viét : \(\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=m^2+2m-3\end{matrix}\right.\)\)
Lại có :\( \dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{5}\)
\(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{x_1+x_2}{5}\)
\(\Rightarrow\left(x_1+x_2\right)\left(x_1x_2\right)=5\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(2m-4\right)\left(m^2+2m-3\right)=5\left(2m-4\right)\)
\(\Leftrightarrow2m^3+4m^2-6m-4m^2-8m+12=10m-20\)
\(\Leftrightarrow2m^3-24m+32=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=-4\left(n\right)\\m=2\left(l\right)\end{matrix}\right.\)
Vậy \(m=-4\) thì thỏa điều kiện
\(a)\)
\(A=3\left|5x-\frac{1}{4}\right|+\frac{2}{3}\)
Ta có:
\(\left|5x-\frac{1}{4}\right|\ge0\)
\(\Leftrightarrow3\left|5x-\frac{1}{4}\right|\ge0\)
\(\Leftrightarrow3\left|5x-\frac{1}{4}\right|+\frac{2}{3}\ge\frac{2}{3}\)
Dấu '' = '' xảy ra khi:
\(5x-\frac{1}{4}=0\)
\(\Leftrightarrow5x=\frac{1}{4}\)
\(\Leftrightarrow x=\frac{1}{20}\)
Vậy GTNN của A là \(\frac{2}{3}\Leftrightarrow x=\frac{1}{20}\)
\(b)\)
\(B=\left|3x-6\right|+\left|2y-14\right|-8\)
Ta có:
\(\left|3x-6\right|\ge0\)
\(\left|2y-14\right|\ge0\)
\(\Leftrightarrow\left|3x-6\right|+\left|2y-14\right|-8\ge-8\)
Dấu '' = '' xảy ra khi:
\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\2y-14=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=7\end{cases}}\)
Vậy ...