BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau:
1) 3n + 1 và 4n + 1 với n \(\in\) N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(3n+1 ; 5n + 2 ) là d
=> \(\begin{cases}3n+2⋮d\\5n+2⋮d\end{cases}\)
=> 5 ( 3n + 2 ) - 3 ( 5n + 2 ) ⋮ d
=> 2 ⋮ d
Mà chưa xác định được n chẵn hay lẻ
=> Đề sai
Goi ƯCLN 2n+1 ; 14n+5 là d
\(\Rightarrow\begin{cases}2n+1⋮d\\14n+5⋮d\end{cases}\)
=> 7 ( 2n + 1 ) - ( 14 n + 5 ) ⋮ d
=> 2 ⋮ d
Mà 2n + 1 lẻ
=> d = 1
Vậy ...........
BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau
:3) 2n + 1 và 14n + 5 với n ∈ N
Gọi d là = (2n+1, 14n+5)
=) 2n+1 chia hết cho d
=)14n+ 5 chia hết cho d
Vì 2n+1 là số lẻ mà d là ước của 2n+1
=) d là số lẻ
Ta có: 7 (2n+1) - (14n+5)
= 14n + 7 - 14n + 5
= 2
Mà 2n+1 lẻ
=) d= 1
Vậy (2n+1, 14n+5) = 1
a/GỌI ƯCLN CỦA A VÀ B LÀ D
ƯCLN (4n+3;5n+1)=D
suy ra {4n+3 chia hết cho D
{5n+1 chia hết cho D
suy ra{5(4n+3) chia hết cho D
{4(5n+1) chi hết cho D
suy ra 5(4n+3)-4(5n+1) chia hết cho D
suy ra (20n+3)-(20n+1) chia hết cho D
suy ra 3 - 1 chia hết cho D
suy ra 2 chia hết cho D
SUY RA D thuộc Ư(2)
suy ra D =2 (tm đề bài)
VẬY ƯCLN của (a;b) = 2
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
Gọi d là ƯCLN(3n + 1; 4n + 1), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n+1\right)⋮d\\3\left(4n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+4⋮d\\12n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(12n+4\right)-\left(12n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+1;4n+1\right)=1\)
\(\Rightarrow\)3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau.
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau
a) Gọi 2 số lẻ liên tiếp là 2n+ 1; 2n+ 3.
Gọi( 2n+ 1; 2n+ 3)= d.
=> 2n+ 1\(⋮\) d; 2n+ 3\(⋮\) d.
=>( 2n+ 3)-( 2n+ 1)\(⋮\) d.
=> 2n+ 3- 2n- 1\(⋮\) d.
=> 2\(⋮\) d.
=> d\(\in\){ 1; 2}.
Mà 2n+ 1 không\(⋮\) 2.
=> d= 1.
=>( 2n+ 1; 2n+ 3)= 1.
Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau.
b) Gọi( 2n+ 5; 3n+ 7)= d.
=> 2n+ 5\(⋮\) d; 3n+ 7\(⋮\) d.
Ta có: 2n+ 5\(⋮\) d.
=> 3( 2n+ 5)\(⋮\) d.
=> 6n+ 15\(⋮\) d( 1).
3n+ 7\(⋮\) d.
=> 2( 3n+ 7)\(⋮\) d.
6n+ 14\(⋮\) d( 2).
Từ( 1) và( 2), ta có:
( 6n+ 15)-( 6n+ 14)\(⋮\) d.
=> 6n+ 15- 6n- 14\(⋮\) d.
=> 1\(⋮\) d.
=> d= 1.
=>( 2n+ 5; 3n+ 7)= 1.
Vậy 2n+ 5 và 3n+ 7 nguyên tố cùng nhau.
Gọi ƯCLN(3n+1 ; 4n +1 ) là d
\(\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}\)
=> 4 ( 3n + 1) - 3 ( 4n + 1 ) ⋮ d
=> 1 ⋮ d
=> d = 1
Vậy .......
BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau:
1) 3n + 1 và 4n + 1 với n ∈ N
Gọi d là (3n + 1, 4n+1)
=) 3n+1 chia hết cho d
=) 4n+1 chia hết cho d
Vì 3n+1 là số lẻ mà d là ước của 3n+1 =) d là số lẻ
Ta có: 4(3n+1) - 3(4n+1)
= 12n + 4 - 12n+3
= 1
hay d chia hết cho 1 =) d =1 (đpcm)
do đó : (3n + 1, 4n+1) = 1