K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

dễ thế mà không biết làm

14 tháng 11 2017

Gọi d là ƯCLN(3n + 1; 4n + 1), d \(\in\)N*

\(\Rightarrow\hept{\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(3n+1\right)⋮d\\3\left(4n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+4⋮d\\12n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(12n+4\right)-\left(12n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(3n+1;4n+1\right)=1\)

\(\Rightarrow\)3n + 1 và 4n + 1 là hai số nguyên tố cùng nhau.

12 tháng 2 2016

Gọi ƯCNL(3n+1 ; 4n+1) = d

Ta có : 3n + 1 chia hết cho d  =>  4(3n + 1) chia hết cho d

            4n + 1 chia hết cho d  =>  3(4n + 1) chia hết cho d

=> 4(3n + 1) - 3(4n + 1) chia hết cho d

=> (12n + 4) - (12n + 3) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 3n + 1 và 4n + 1 nguyên tố cùng nhau (đpcm)

12 tháng 2 2016

Gọi d là ƯCLN(3n+1;4n+1)

       3n+1 chia hết cho d             4(3n+1) chia hết cho d       12n+4 chia hết cho d(1)

=>{                                    =>{                                     =>

       4n+1 chia hết cho d            3(4n+1) chia hết cho d         12n+3 chia hết cho d(2)

Lấy (1)-(2) ta được : (12n+4) - (12n+3) chia hết cho d <=>1chia hết cho d

=> d thuộc Ư(1)=>d thuộc Ư(1) => d thuộc {+-1} vì d là ƯCLN=> d=1=> 3n+1 và 4n+1 là 2 số nguyên tố cùng nhau

 

23 tháng 1 2017

Gọi d là ƯCLN(3n + 1; 4n + 1) Nên ta có :

3n + 1 ⋮ d và 4n + 1 ⋮ d

=> 4(3n + 1) ⋮ d và 3(4n + 1) ⋮ d

=> 12n + 4 ⋮ d và 12n + 3 ⋮ d

=> (12n + 4) - (12n + 3) ⋮ d

=> 1 ⋮ d => d = ± 1

Vì ƯCLN(3n + 1; 4n + 1) = 1 nên 3n + 1 và 4n + 1 là nguyên tố cùng nhau ( đpcm )

23 tháng 1 2017

Gọi \(d=\left(3n+1,4n+1\right)=>\hept{\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}}\)

\(=>\left(4n-1\right)-\left(3n-1\right)⋮d\)

\(=>4\left(3n-1\right)-3\left(4n-1\right)⋮d\)

\(=>\left(12n-4\right)-\left(12n-3⋮d\right)\)

\(=>1⋮d\)(đpcm)

23 tháng 12 2022

loading...

27 tháng 10 2023

 gải:

ta gọi x là ƯCLN của 2n+1 và 3n+1

suy ra: (2n+1) chia hết cho x

           (3n+1) chia hết cho x

suy ra: [3(2n+1)-2(3n+1)] chia hết cho x

hay 1 chia hết cho x

suy ra: x e Ư(1)

Ư(1)={1}

do đó x=1

nên ƯCLN(2n+1;3n+1)=1

vì ƯCLN  của 2n+1 và 3n+1 là 1 nên hai số này là hai số nguyên tố cùng nhau 

21 tháng 11 2016

n+1 và 4n+3 là 2 số nguyên tố cùng nhau khi ƯCLN (n+1;4n+3)=1

gọi ƯCLN (n+1;4n+3)=d

=>[(n+1)+(4n+3)] chia hết cho d

=>1 chia hết cho d =>d=1

=>ƯCLN(n+1;4n+3) =1

vậy n+1 và 4n+3 là 2 số nguyên tố cùng nhau

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

20 tháng 4 2018

Ta có:3n+1 chia hết cho d => 4(3n+1) chia hết cho d => 12n+4 d

4n+1 chia hết cho d => 3(3n+1) chia hết cho d => 12n+3 d

(12n+4 )- (12n+3) chia hết cho d

1 chia hết cho d

vậy 3n+1 và 4n+1 là hai số nguyên tố cùng nhau

24 tháng 1 2022

Refer:

Ta có:3n+1 chia hết cho d => 4(3n+1) chia hết cho d => 12n+4 d

4n+1 chia hết cho d => 3(3n+1) chia hết cho d => 12n+3 d

(12n+4 )- (12n+3) chia hết cho d

1 chia hết cho d

vậy 3n+1 và 4n+1 là hai số nguyên tố cùng nhau

24 tháng 1 2022