Nếu x2+y2=1 thì x6+3x2y2+y6 =?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = x6 + y6 = (x2 + y2)(x4 - x2 y2 + y4)
= (x2 + y2)2 - 3x2 y2 \(\ge1-3×\frac{\left(x^2+y^2\right)^2}{4}=1-\frac{3}{4}=\frac{1}{4}\)
Đạt được khi x2 = y2 = \(\frac{1}{2}\)
Khi x = - 1; y = 1 thì xy = (-1).1= -1
Ta có: xy – x2y2 + x3y3 – x4y4 + x5y5 – x6.y6
= xy – (xy)2 + (xy)3 – (xy)4 + (xy)5 – (xy)6
= -1 – (-1)2 + (-1)3 – (-1)4 + (-1)5 - (-1)6
= -1 – 1 + (-1) – 1 + (-1) – 1
= - 6
Chọn đáp án D
\(M=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)
\(=\left(x^2+y^2\right)\left(2x^2+y^2\right)+y^2\)
\(=2x^2+2y^2=2\)
\(=2x^4+2x^2y^2+x^2y^2+y^4+y^2\\ =2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\\ =2x^2.1+y^2+y^2=2\left(x^2+y^2\right)=2.1=2\)
a: =3x^2y^3-2x^3y^2-2xy^4+3x^3y^2+3x^2y^3+5x^4y-5x^3y^2
=6x^2y^3-4x^3y^2-2xy^4+5x^4y
Bậc là 5
b: =x^4-y^4-3x^2y^2-3xy^3+5x^2y^2+x^3y-x^2y^2
=x^4-y^4+x^2y^2-3xy^3+x^3y
Bậc là 4
c: =3x^3y+3x^2y^2-7x^3y+7xy^3-3xy^2+2x^2y^2+5xy+x
=-4x^3y+5x^2y^2+7xy^3-3xy^2+5xy+x
bậc là 4
a, \(8^3yz+12^2yz+6xyz+yz\)
\(=512yz+144yz+6xyz+yz\)
\(=yz\left(512+14+6x+1\right)\)
\(=yz\left(527+6x\right)\)
$---$
b, \(81x^4\left(z^2-y^2\right)-z^2+y^2\)
\(=81x^4\left(z^2-y^2\right)-\left(z^2-y^2\right)\)
\(=\left(z^2-y^2\right)\left(81x^4-1\right)\)
\(=\left(z-y\right)\left(z+y\right)\left[\left(9x^2\right)^2-1^2\right]\)
\(=\left(z-y\right)\left(z+y\right)\left(9x^2-1\right)\left(9x^2+1\right)\)
\(=\left(z-y\right)\left(z+y\right)\left[\left(3x\right)^2-1^2\right]\left(9x^2+1\right)\)
\(=\left(z-y\right)\left(z+y\right)\left(3x-1\right)\left(3x+1\right)\left(9x^2+1\right)\)
$---$
c, \(\dfrac{x^3}{8}-\dfrac{y^3}{27}+\dfrac{x}{2}-\dfrac{y}{3}\)
\(=\left[\left(\dfrac{x}{2}\right)^3-\left(\dfrac{y}{3}\right)^3\right]+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)
\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}\right)+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)
\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}+1\right)\)
$---$
d, \(x^6+x^4+x^2y^2+y^4-y^6\)
\(=\left(x^6-y^6\right)+\left(x^4+x^2y^2+y^4\right)\)
\(=\left[\left(x^2\right)^3-\left(y^2\right)^3\right]+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2+1\right)\)
$Toru$
Cho x, y là hai số thỏa mãn x2 - y2 = 2
Vậy giá trị của biểu thức A = 2.(x6 - y6) - 6.( x4 + y4) là?
Ta có : \(x2-y2=2\Rightarrow\left(x-y\right)2=2\Rightarrow x-y=1\)
\(A=2\left(x6-y6\right)-6\left(x4+y4\right)\)
\(\Rightarrow2\left[\left(x-y\right)6\right]-6\left[\left(x+y\right)4\right]\)
Mà \(x-y=1\Rightarrow A=2.6-6\left[\left(x+y\right)4\right]\)
\(\Rightarrow A=6\left[2-\left(x+y\right)4\right]\)
\(\Rightarrow A=6\left[2-4x-4y\right]=6\left[2-4\left(x-y\right)\right]\)
\(\Rightarrow A=6\left[2-4.1\right]=6.\left[2-4\right]=6.\left(-2\right)=-12\)
Vậy A = -12
`M = 2x^4 + 3x^2y^2 + y^4 + y^2`
`M = 2x^4 + 2x^2y^2 + x^2y^2 + y^4 + y^2`
`M = 2x^2( x^2 + y^2 ) + ( x^2 + y^2 )y^2 + y^2`
Thay `x^2+y^2=1` vào `M` ta có `:`
`M = 2x^2 . 1 + y^2 . 1 + y^2`
`M = 2x^2 + 2y^2`
`M = 2( x^2 + y^2 )`
`M = 2.1`
`M=2`
Bài 3:
\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)
\(=\left(x^2-9\right)\left(x^2-1\right)+15\)
\(=x^4-10x^2+9+15\)
\(=x^4-10x^2+24\)
\(=\left(x^2-4\right)\left(x^2-6\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)
a) (x - y)(x + y + 3). b) (x + y - 2xy)(2 + y + 2xy).
c) x 2 (x + l)( x 3 - x 2 + 2). d) (x – 1 - y)[ ( x - 1 ) 2 + ( x - 1 ) y + y 2 ].
a.
$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$
b.
$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$
c.
$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$
d.
$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$
$=(x+1)(x^2-4x+1)$
e.
$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$
$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$
f.
$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$
$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$
g.
$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$
$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$
$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$
$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$
h.
$x^6+2x^5+x^4-2x^3-2x^2+1$
$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$
$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$
1 chắc chắn 100% luon !
Ta có :\(x^6+3x^2y^2+x^6=\left(x^6+y^6\right)+3x^2y^2=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)+3x^2y^2\)
\(=x^4-x^2y^2+y^4+3x^2y^2\) ( Vì \(x^2+y^2=1\) )
\(=x^4+2x^2y^2+y^4=\left(x^2+y^2\right)^2=1.\)