K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2014

​1 chắc chắn 100% luon !

28 tháng 12 2014

Ta có :\(x^6+3x^2y^2+x^6=\left(x^6+y^6\right)+3x^2y^2=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)+3x^2y^2\)

\(=x^4-x^2y^2+y^4+3x^2y^2\) ( Vì \(x^2+y^2=1\) )

\(=x^4+2x^2y^2+y^4=\left(x^2+y^2\right)^2=1.\)

7 tháng 11 2016

P = x6 + y6 = (x2 + y2)(x4 - x2 y2 + y4

= (x2 + y2)2 - 3x2 y2 \(\ge1-3×\frac{\left(x^2+y^2\right)^2}{4}=1-\frac{3}{4}=\frac{1}{4}\)

Đạt được khi x2 = y2 = \(\frac{1}{2}\)

10 tháng 12 2017
làm ra (x^2+y^2)^2-3.x^2.y^2 rùi ko bt
27 tháng 10 2023

a, \(8^3yz+12^2yz+6xyz+yz\)

\(=512yz+144yz+6xyz+yz\)

\(=yz\left(512+14+6x+1\right)\)

\(=yz\left(527+6x\right)\)

$---$

b, \(81x^4\left(z^2-y^2\right)-z^2+y^2\)

\(=81x^4\left(z^2-y^2\right)-\left(z^2-y^2\right)\)

\(=\left(z^2-y^2\right)\left(81x^4-1\right)\)

\(=\left(z-y\right)\left(z+y\right)\left[\left(9x^2\right)^2-1^2\right]\)

\(=\left(z-y\right)\left(z+y\right)\left(9x^2-1\right)\left(9x^2+1\right)\)

\(=\left(z-y\right)\left(z+y\right)\left[\left(3x\right)^2-1^2\right]\left(9x^2+1\right)\)

\(=\left(z-y\right)\left(z+y\right)\left(3x-1\right)\left(3x+1\right)\left(9x^2+1\right)\)

$---$

c, \(\dfrac{x^3}{8}-\dfrac{y^3}{27}+\dfrac{x}{2}-\dfrac{y}{3}\)

\(=\left[\left(\dfrac{x}{2}\right)^3-\left(\dfrac{y}{3}\right)^3\right]+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)

\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}\right)+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)

\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}+1\right)\)

$---$

d, \(x^6+x^4+x^2y^2+y^4-y^6\)

\(=\left(x^6-y^6\right)+\left(x^4+x^2y^2+y^4\right)\)

\(=\left[\left(x^2\right)^3-\left(y^2\right)^3\right]+\left(x^4+x^2y^2+y^4\right)\)

\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)+\left(x^4+x^2y^2+y^4\right)\)

\(=\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2+1\right)\)

$Toru$

Bài 3: 

\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)

\(=\left(x^2-9\right)\left(x^2-1\right)+15\)

\(=x^4-10x^2+9+15\)

\(=x^4-10x^2+24\)

\(=\left(x^2-4\right)\left(x^2-6\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)

 

25 tháng 12 2018

a) (x - y)(x + y + 3).                    b) (x + y - 2xy)(2 + y + 2xy).

c) x 2 (x + l)( x 3  -  x 2  + 2).              d) (x – 1 - y)[ ( x   -   1 ) 2   +   ( x   -   1 ) y   +   y 2 ].

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$

19 tháng 4 2022

Vì (x-y)\(^2\)≥0 ∀x,y 

<=> x\(^2\)-2xy+y\(^2\)≥0

<=> x\(^2\)+y\(^2\)≥2xy

<=>2(x\(^2\)+y\(^2\))≥(x+y)\(^2\) = 1 (đpcm)

3 tháng 11 2023

a) x⁶ + y⁶ = (x²)³ + (y²)³

= (x² + y²)(x⁴ - x²y² + y⁴)

b) x⁶ - y⁶

= (x³)² - (y³)²

= (x³ - y³)(x³ + y³)

= (x - y)(x² + xy + y²)(x + y)(x² - xy + y²)

a) \(x^2+4y^2+4xy\)

\(=x^2+2.x.2y+\left(2y\right)^2\)

\(=\left(x+2y\right)^2\)

b) \(\left(x+y\right)^2-\left(x-y\right)^2\)

\(=\left(x+y-x+y\right)\left(x+y+x-y\right)\)

\(=2y.2x\)

\(=4xy\)

c) \(\left(3x+1\right)^2-\left(x+1\right)^2\)

\(=\left(3x+1-x-1\right)\left(3x+1+x-1\right)\)

a) \(x^6-y^6=\left(x^2\right)^3-\left(y^2\right)^3\)

\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)\)

3 tháng 3 2019

 

x 6 - y 6 = x 3 2 - y 3 2 = x 3 + y 3 x 3 - y 3 = x + y x 2 - x y + y x - y x 2 + x y + y 2