1> Tìm 2 chữ số tân cùng của số \(5^n\) ( n>1)
2> tích các số lẻ liên tiếp có tân cùng là 7
3> A = \(2.2^2.2^3..........2^{10}.5^2.5^4.5^6.5^{14}\) tận cùng có bao nhiêu chữ số 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
Ta có :
A = 999999999982
= (99999999998 + 2)(99999999998 - 2) + 4
= 100 000 000 000 x 99999999996 + 4
= 99999999996000000000004
Từ đó ta có tổng các chữ số của A là
9 x 10 + 6 + 4 = 100.
tick đúg cho mình nha
1.
do tích các số lẻ có tận cùng là 7 nên trong các số đó, không có số nào tận cùng bằng 5
vậy nó có thể tận cùng bằng 3,1,7,9
mà đó là tích các số lẻ liên tiếp nên tích đó có thể có 3(tận cùng bằng 9,3,1 ), hoặc 4 ( tận cùng bằng 1,3,7,9)
tích trên không thể có 2 thừa số vì nếu có 2 thừa số thì chúng phải tận cùng băng 9,3 hoặc 1,7. mà các số tận cùng như trên không phải là các số lẻ liên tiếp
1+2+3+...+10=(1+10).10:2=55
2+4+6+...+14=(2+14).7:2=56
A= 2.2^2.2^3.....2^10. 5^2.5^4.5^6.....5^14=2^55.^56=(10)^55.5
Suy ra có 55 chữ số 0
2.22.23.....210.5.52.53....510
=(2.5).(22.52).....(210.510)
=10.102.103.....1010
=101+2+3+...+10
mình tính nhanh luôn nhé<vì chắc bạn cũng biết tính rồi>
=1055
tận cùng 55 số 0
1. 5n có 2 chữ số tận cùng là 25.
1)Vì n>1\(\Rightarrow\)n có dạng 2k,2k+1(k\(\in\)N*)
Xét n có dạng 2k\(\Rightarrow5^{2k}\)=\(25^k\) có 2 chữ số tận cùng là 25
Xét n có dạng 2k+1
\(\Rightarrow5^{2k+1}\)=\(5^{2k}\cdot5=25^k\cdot5\)
Vì \(25^k\) có 2 chữ số tận cùng là 25
\(\Rightarrow\)\(25^k\cdot5\) có 3 chữ số tận cùng là 125
\(\Rightarrow\)\(25^k\cdot5\) có 2 chữ số tận cùng là 25
Vậy trong trường hợp nào thì \(5^n\) luôn có 2 chữ số tận cùng là 25(n>1)