Cho ánh xạ f(x):R\{-1}→R xác định bởi \(f\left(x\right)\frac{2x}{1+x}\)
Hỏi f có là đơn ánh, toàn ánh, song ánh hay không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)
\(\Leftrightarrow-5m-4< 0\)
\(\Leftrightarrow m>-\dfrac{4}{5}\)
b.
\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)
\(\Leftrightarrow-3m+7\le0\)
\(\Rightarrow m\ge\dfrac{7}{3}\)
c.
\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)
\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)
\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)
Lời giải:
Thay $x=0$ vào điều kiện đề thì $f(1)=0$ hoặc $f(1)=-1$
Đạo hàm 2 vế:
$4f(2x+1)f'(2x+1)_{2x+1}=1+3f(1-x)^2f'(1-x)_{1-x}$
Thay $x=0$ vô thì:
$4f(1)f'(1)=1+3f(1)^2f'(1)$
Nếu $f(1)=0$ thì hiển nhiên vô lý
Nếu $f(1)=-1$ thì: $-4f'(1)=1+3f'(1)\Rightarrow f'(1)=\frac{-1}{7}$
PTTT tại $x=1$ có dạng:
$y=f'(1)(x-1)+f(1)=\frac{-1}{7}(x-1)-1=\frac{-x}{7}-\frac{6}{7}$
\(f\left(\frac{1}{3}\right)+2f\left(\frac{1}{\frac{1}{3}}\right)=\left(\frac{1}{3}\right)^2\Rightarrow f\left(\frac{1}{3}\right)+2f\left(3\right)=\frac{1}{9}\)(1)
\(f\left(3\right)+2f\left(\frac{1}{3}\right)=3^2\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)=18\)(2)
Từ (1) và (2) \(\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)-f\left(\frac{1}{3}\right)-2f\left(3\right)=18-\frac{1}{9}\)
\(\Rightarrow3f\left(\frac{1}{3}\right)=\frac{161}{9}\Rightarrow f\left(\frac{1}{3}\right)=\frac{161}{27}\)