K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(D=3^{100}+3^{101}+...+3^{149}+3^{150}\)

nên \(3D=3^{101}+3^{102}+...+3^{150}+3^{151}\)

\(\Leftrightarrow2\cdot D=3^{151}-3^{100}\)

hay \(D=\dfrac{3^{151}-3^{100}}{2}\)

11 tháng 9 2021

\(3D=3^{101}+3^{102}+3^{103}+...+3^{150}+3^{151}\\ 3D-D=3^{151}-3^{100}\\ 2D=3^{151}-3^{100}\\ D=\dfrac{3^{151}-3^{100}}{2}\)

27 tháng 9 2021

Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12

Mà đoạn 2A sai nhé bạn, sửa lại:

2A = 3101−13101−1 2A=-10001

A=-10001/2

A=-5000,5

Vậy A=-5000,5

11 tháng 9 2021

\(B=1+3+3^2+3^3+...+3^{100}+3^{101}\)

\(\Rightarrow3B=3+3^2+3^3+3^4+...+3^{101}+3^{102}\)

\(\Rightarrow3B-B=3^{102}-1\)

\(\Leftrightarrow2B=3^{102}-1\)

\(\Leftrightarrow B=\dfrac{3^{102}-1}{2}\)

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

5 tháng 3 2021

Với mọi x, y khác 0 ta có 

\(x^4>0\)

\(y^4>0\)

=> \(x^4.y^4>0\)

=> A > 0 \(\forall x,y\ne0\)

a) Ta có: \(A=2xy^2\cdot\left(\dfrac{1}{2}x^2y^2x\right)\)

\(=x^4y^4\)

b) Bậc của đơn thức là 8

28 tháng 2 2022

Trong một ngày trại gà thu được số trứng là :

3150÷3=1050 (quả)

Trong tám ngày trại thu được số trứng là :

1050×8=8400 (quả)

Đáp số : 8400 quả

HT

@@@@@

28 tháng 2 2022

mỗi ngày đẻ số trứng là

3150:3=1050 quả 

8 ngày đẻ số trứng là

1050 nhân 8400 quả

Đ/S:8400 quả

`#3107.101107`

\(S=1+3^1+3^2+3^3+...+3^{101}\)

\(3S=3+3^2+3^3+...+3^{102}\)

\(3S-S=\left(3+3^2+3^3+...+3^{102}\right)-\left(1+3+3^2+...+3^{101}\right)\)

\(2S=3+3^2+3^3+3^{102}-1-3-3^2-...-3^{101}\)

\(2S=3^{102}-1\)

\(S=\dfrac{3^{102}-1}{2}\)

Vậy, \(S=\dfrac{3^{102}-1}{2}.\)

7 tháng 1 2024

3s=3+3^2+3^3+....+3^102

3s-s=2s

2s=3^102-1

s=3^102-1 trên2

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

Lời giải:

Đặt biểu thức là $A$

\(A=\frac{1}{3}+\frac{1}{3^3}+\frac{1}{3^5}+....+\frac{1}{3^{99}}+\frac{1}{3^{101}}\)

\(3^2.A=3+\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

Trừ theo vế:

\(8A=3-\frac{1}{3^{101}}\Rightarrow A=\frac{3}{8}-\frac{1}{8.3^{101}}\)

5 tháng 3 2021

Akai Haruma Giáo viên Giúp em câu em gửi trong inb nhé chị

P/s : Sorry bạn chủ tus nhé , mình lượn ngay đây 

30 tháng 12 2022

Số các số hạng là: 101 – 0 + 1 = 102 số.
Ta nhận thấy:
1 + 3 + 32 = 1 + 3 + 9 = 13;
33 + 34 + 35 = 33(1 + 3 + 32) = 33.13;

Mà 102 có tổng các chữ số là 1 + 0 + 2 = 3 chia hết cho 3 nên 102 chia hết cho 3, nghĩa là:
A = (1 + 3 + 32) + (33 + 34 + 35) + … + (399 + 3100 + 3101)
= (1 + 3 + 32) + 33(1 + 3 + 32) + … + 399(1 + 3 + 32)
= 13 + 33.13 + … + 399.13
= 13.(1 + 33 + … + 399) chia hết cho 13.
Vậy A chia hết cho 13.