K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

Ta có 

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

..............

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

=> S < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

S < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(S< 1-\dfrac{1}{100}< 1\)(do 1/100 >0)

ĐPcm

Giải:

\(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\) 

\(...\) 

\(\dfrac{1}{99^2}=\dfrac{1}{99.99}< \dfrac{1}{98.99}\) 

\(\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{99.100}\) 

\(\Rightarrow S< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\) 

\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\) 

\(\Rightarrow S< \dfrac{1}{1}-\dfrac{1}{100}< 1\) 

\(\Rightarrow S< 1\) 

Vậy S < 1.

2 tháng 11 2016

Ta có 

\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{99}{2^{99}}+\frac{100}{2^{100}}\)

\(2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{99}{2^{98}}+\frac{100}{2^{99}}\)

Suy ra \(A=2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\frac{100}{2^{100}}\)

Đặt \(n=\frac{1}{2}\) thì \(A=1+n+n^2+...+n^{99}-\frac{100}{2^{100}}\)

Xét \(B=1+n+n^2+...+n^{99}\Leftrightarrow B.n=n+n^2+n^3+...+n^{100}\)

\(\Leftrightarrow B.n=\left(1+n+n^2+...+n^{99}\right)+\left(n^{100}-1\right)\)

\(\Leftrightarrow B.n=B+n^{100}-1\Leftrightarrow B\left(n-1\right)=n^{100}-1\Leftrightarrow B=\frac{n^{100}-1}{n-1}\)

Suy ra \(A=\frac{\frac{1}{2^{100}}-1}{\frac{1}{2}-1}-\frac{100}{2^{100}}=2\left(1-\frac{1}{2^{100}}\right)-\frac{100}{2^{100}}=-\frac{102}{2^{100}}+2< 2\)

Vậy A < 2

3 tháng 8 2016

\(A=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{99!}+\frac{1}{100!}\)

\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(A< 1+1-\frac{1}{100}\)

\(A< 2-\frac{1}{100}< 2\)

4 tháng 8 2016

\(A=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{99!}+\frac{1}{100!}\)

\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(A< 1+1-\frac{1}{100}\)

\(A< 2-\frac{1}{100}< 2\)

16 tháng 4 2017

Ta có: \(\frac{1}{2}A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{100}{2^{101}}\)

\(A-\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)

Ta có: \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}=1-\frac{1}{2^{100}}< 1\)

\(\Rightarrow\frac{1}{2}A< 1-\frac{100}{2^{101}}\)

\(\Rightarrow A< 2-\frac{200}{2^{101}}< 2\)

Vậy A<2

6 tháng 5 2017

Ta có   \(A=\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+....+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+......+\frac{99}{100}}\)

\(A=\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{100}\right)}{\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)}\)

\(A=\frac{2\left[100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+.....+\frac{1}{100}\right)\right]}{100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{100}\right)}\)

\(\Rightarrow A=2\)

6 tháng 5 2017

Ủa sao bạn ra được \(\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)  số 2 ở 200 đâu ra vậy ! và \(\frac{3}{2}\)nữa !