K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c' cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’,...
Đọc tiếp

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

cho tam giác abc có 3 góc nhọn. phía ngoài tam giác abc dựng các hình vuông abed, bcgf, achi có tâm lần lượt là c’, a’, b’. chứng minh: aa' = b'c'

 

1
15 tháng 6 2022

https://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.htmlhttps://olm.vn/hoi-dap/detail/239868952049.html

14 tháng 2 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Phép quay tâm C góc 90 ο  biến MB thành AI. Do đó MB bằng và vuông góc với AI. DP song song và bằng nửa BM, DO song song và bằng nửa AI. Từ đó suy ra DP bằng và vuông góc với DO.

b) Từ câu a) suy ra phép quay tâm D, góc 90 ο  biến O thành P, biến A thành Q. Do đó OA bằng và vuông góc với PQ.

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.Bài 6. Cho tứ giác ABCD có hai đường chéo cắt...
Đọc tiếp

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.

Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.

Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.

Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.

Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .

Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.

Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .

Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé. 

9
28 tháng 3 2020

A B C H M O G N

Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.

M là trung điểm của BC và HN nên BNCH là hình bình hành

\(\Rightarrow NC//BH\)

Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O ) 

Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)

M là trung điểm BC nên OM \(\perp\)BC

Xét \(\Delta AHG\)và \(\Delta OGM\)có :

\(\widehat{HAG}=\widehat{GMO}\)\(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)

\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng

28 tháng 3 2020

A B C D M N P Q E F T S

gọi E,F,T lần lượt là trung điểm của AB,CD,BD

Đường thẳng ME cắt NF tại S

Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )

Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)

Tương tự , \(NF\perp CD;\)\(TQ//CD\)

\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )

\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)

Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )

Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)

14 tháng 3 2018

a ) Xét góc DAC  và góc EAB có

góc ADC = 90 độ + góc ABC (gt) (1)

góc ABE = 90 độ +góc BAC   (2) 

từ (1) và (2)  =>   góc DAC = góc EAB

Xét tam giác DAC và  tam giác EAB có 

AD =AB ( vì tam giác ABD vuông cân )

góc DAC = góc BAE

AC =AE 

=> tam giác DAC = tam giác EAB ( cạnh - góc - cạnh )

=>  DC=EB ( cặp cạnh tương ứng )

+>  chứng minh BE vuông góc với CD 

Gọi O là giao điểm của DC và BE 

Vì góc O1 = O2 ( đối đỉnh )

góc C1 = E1  ( vì tam giác DAC = tam giác EAB ( cmt )

=> góc O = A1 = 90 độ

=>  CD vuông góc với BE ( điều phải chứng minh )

14 tháng 3 2018

A B C D E O 1 2

16 tháng 9 2019

tự kẻ hình : 

có M; N lần lượt là trung điểm của AB; AC (gt)

=> MN là đường tb của tam giác ABC (đn)

=> MN // BC (đl)

góc BCNM là tứ giác

=> BCNM là hình thang (đn)

17 tháng 9 2019

@Soái muội:Uyên làm đúng rồi đó bạn! Làm theo bạn ấy đi

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
30 tháng 12 2017

A B C D E O H M F P Q 1 1 K 1 1

1) Ta có: ^BAC+^BAD=^BAC+^CAE=^BAC=900 => ^DAC=^BAE

Xét \(\Delta\)DAC & \(\Delta\)BAE: AD=AB; ^DAC=^BAE; AC=AE => \(\Delta\)DAC=\(\Delta\)BAE (c.g.c)

=> CD=BE (2 cạnh tương ứng)

Gọi CD giao BE tại P, AB giao CD tại Q

Do \(\Delta\)DAC=\(\Delta\)BAE (cmt) => ^D1=^B1 (2 góc tương ứng)

Xét 2 tam giác: \(\Delta\)DAQ và \(\Delta\)BPQ: ^DQA=^BQP (đối đỉnh), ^D1=^B1

=> ^DAQ=^BPQ => ^BPQ=900 hay CD vuông góc với BE.

2) Trên tia đối của AM lấy điểm F sao cho AF=2AM.

Chứng minh được: \(\Delta\)ABM=\(\Delta\)FCM (c.g.c) => AB=FC. Mà AB=AD => FC=AD

=> ^ABM=^FCM (2 góc tương ứng). Mà 2 góc này so le trong => AB//FC

=> ^BAC+^ACF=1800. (1)

Lại có: ^BAC+^BAD+^CAE+^EAD=3600 => ^EAD+^BAC=3600-^BAD-^CAE=1800 (2)

Từ (1) và (2) => ^ACF=^EAD.

Xét \(\Delta\)ACF & \(\Delta\)EAD: AC=EA; ^ACF=^EAD; CF=AD => \(\Delta\)ACF=\(\Delta\)EAD (c.g.c)

=> AF=DE (2 cạnh tương ứng). Thấy AF=2AM => DE=2AM.

3) Gọi AM cắt DE tại K

Ta có: \(\Delta\)ACF=\(\Delta\)EAD (cmt) => ^A1=^E1.

Mà ^A1+^EAK=900 => ^E1+^EAK=900 => \(\Delta\)EKA vuông tại K hay AM vuông góc với DE.

4) Có: ^ACH+^HAC=900. Mà ^OAE+^HAC=900 => ^ACH=^OAE hay ^ACM=^OAE.

Xét \(\Delta\)AMC & \(\Delta\)EOA có: AC=AE, ^A1=^E1; ^ACM=^OAE => \(\Delta\)AMC=\(\Delta\)EOA (g.c.g)

=> AM=EO (2 cạnh tương ứng).

Lại có: DE=2AM (cmt) => DE=2EO (O\(\in\)DE) hay  là trung điểm của DE (đpcm).

1 tháng 1 2018

Cảm ơn nhé!