K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 8 2021

a.

\(y=2\left(1-cos2x\right)-\dfrac{5}{2}sin2x+\dfrac{1}{2}+\dfrac{1}{2}cos2x+10\)

\(=-\dfrac{1}{2}\left(5sin2x+3cos2x\right)+\dfrac{25}{2}\)

\(=-\dfrac{\sqrt{34}}{2}\left(\dfrac{5}{\sqrt{34}}sin2x+\dfrac{3}{\sqrt{34}}cos2x\right)+\dfrac{25}{2}\)

Đặt \(\dfrac{5}{\sqrt{34}}=cosa\)

\(\Rightarrow y=-\dfrac{\sqrt{34}}{2}\left(sin2x.cosa+cos2x.sina\right)+\dfrac{25}{2}\)

\(=-\dfrac{\sqrt{34}}{2}sin\left(2x+a\right)+\dfrac{25}{2}\)

Do \(-1\le sin\left(2x+a\right)\le1\)

\(\Rightarrow\dfrac{25-\sqrt{34}}{2}\le y\le\dfrac{25+\sqrt{34}}{2}\)

NV
6 tháng 8 2021

b.

\(y=\dfrac{sin^2x-2sin2x+1}{3+sin^2x+2cos^2x}=\dfrac{2sin^2x-4sin2x+2}{6+2\left(sin^2x+cos^2x\right)+2cos^2x}\)

\(=\dfrac{1-cos2x-4sin2x+2}{8+1+cos2x}=\dfrac{3-4sin2x-cos2x}{9+cos2x}\)

\(\Rightarrow9y+y.cos2x=3-4sin2x-cos2x\)

\(\Rightarrow4sin2x+\left(y+1\right)cos2x=3-9y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(4^2+\left(y+1\right)^2\ge\left(3-9y\right)^2\)

\(\Leftrightarrow80y^2-56y-8\le0\)

\(\Rightarrow\dfrac{7-\sqrt{89}}{20}\le y\le\dfrac{7+\sqrt{89}}{20}\)

NV
6 tháng 1 2022

1.

\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)

\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)

\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max

2.

\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)

\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)

\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)

\(E_{min}=-1\) khi \(x=0\)

\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)

\(G_{min}=-2\) khi \(x=2\)

12 tháng 8 2019

\(1=x^3+y^3=\frac{x^4}{x}+\frac{y^4}{y}\ge\frac{\left(x^2+y^2\right)^2}{x+y}\ge\frac{\frac{\left(x+y\right)^4}{4}}{x+y}=\frac{\left(x+y\right)^3}{4}\)

\(\Leftrightarrow\)\(x+y\le\sqrt[3]{4}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt[3]{2}}\)

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Lời giải:
Áp dụng BĐT Cô-si ta có:

\(2x+\frac{1}{2x}\geq 2\)

\(y+\frac{9}{y}\geq 6\)

\(\frac{7x}{3}+\frac{7y}{3}=\frac{7}{3}(x+y)=\frac{49}{6}\)

Cộng theo vế:

$P\geq 2+6+\frac{49}{6}=\frac{97}{6}$

Vậy $P_{\min}=\frac{97}{6}$ tại $x=\frac{1}{2}; y=3$

1 tháng 4 2018

mk chỉ cho cách lm ; bn tự lm cho bt nha

câu a : lập bảng sét dấu tìm được \(x\) để \(y>0;y< 0\)

tiếp là đưa nó về dạng bình phương 1 số cộng 1 số \(\left(n^2+m\right)\) rồi tìm \(y_{min}\)

câu b : giao điểm của \(\left(P\right)\) và đường thẳng \(\left(d\right):y=2x+1\)

là nghiệm của hệ phương trình : \(\left\{{}\begin{matrix}y=x^2-2x-1\\y=2x+1\end{matrix}\right.\)