K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

Ta có: x,y,z \(\in\)Z ,nên

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow A>1\)

\(B=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{y}{x+y+z}+\frac{z}{x+y+z}+\frac{x}{x+y+z}=1\)

\(\Rightarrow B>1\)

Ta có: \(A+B=\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)+\left(\frac{z}{z+x}+\frac{x}{z+x}\right)=3\) và B > 1

Do đó A < 2.Vậy 1 < A < 2

=> A có giá trị là 1 số không thuộc tập hợp số nguyên

17 tháng 5 2019

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)

\(A=\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{z+x}\)

\(A=3-\left(\frac{x}{x+z}+\frac{y}{x+y}+\frac{z}{y+z}\right)\)

mà \(\frac{x}{x+z}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)

\(\Rightarrow A< 2\left(1\right)\)

Mặt khác A =  \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)

mà \(\frac{x}{x+z}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)

\(\Rightarrow A>1\left(2\right)\)

Từ (1) và (2) => 1 < A < 2  => A không phải là số nguyên.

~ Học tốt ~ K cho mk nhé! Thank you.

15 tháng 2 2015

Vì x, y, z là các số nguyên dương

Ta có: x/x+y>x/x+y+z

 

23 tháng 2 2015

A = \(\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{x+z}\)

A=3 \(-\left(\frac{x}{x+z}+\frac{y}{x+y}+\frac{z}{y+z}\right)\)

mà \(\frac{x}{x+z}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)

=> A <2 (1)

mặt khác A=\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)

mà \(\frac{x}{x+y}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)

=> A >1 (2)

từ (1) và (2) => 1<A<2 => A ko phải là số nguyên

2 tháng 2 2017

Bạn Hiếu làm đúng rồi đấy!

31 tháng 3 2016

Bài này dễ mà bạn! Bạn chỉ cần chứng minh A nằm giữa 2 số tự nhiên liên tiếp là được !