So sánh :
a ) 536 và 1124
b ) 5300 và 3500
c ) 1619 và 820
d) 6255 và 1257
Cảm ơn !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 536 và 1124
Ta có: 536= (53)12=12512 (1)
1124=(112)12=12112 (2)
Từ (1) và (2) => 536>1124
tương tự.....
Đáp án là :
câu 20 :625 < 1257
câu 21 :536 > 1124
câu 22 :32n < 23n
câu 23 :523 < 6.522
câu 24 :1124 <19920
câu 25 :399 > 112
sorry nghe h tớ gửi quá 100 tin nhắn nên nó ko cho gửi
Bài 1
a)2711>818
b)6255>1257
c)536<1124
d)32n>23n
Bài 2
a)523<6.522
b)7.213>216
c)2115<275.498
\(27^{11}>81^8;625^5< 125^7;5^{36}>11^{24};5^{28}< 26^{14}\)
Hok tốt
\(5^{36}=\left(5^3\right)^{12}=125^{12}\\ 11^{24}=\left(11^2\right)^{12}=121^{12}\)
Nhận thấy : \(125^{12}>121^{12}=>5^{36}>11^{24}\)
Ta có:
536 = 512 (53)12 = 12512; 1124 = 112.12 = (112)12 = 12112
Mà 12512 > 12112 => 536 > 12112
\(a,16^{19}=\left(2^4\right)^{19}=2^{76}\\ 8^{25}=\left(2^3\right)^{25}=2^{75}\)
Vì \(2^{76}>2^{75}=>16^{19}>8^{25}\)
b,\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì \(243^{100}>5^{100}=>3^{500}>5^{100}\)
a) Ta có: \(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125^{12}>121^{12}\) nên \(5^{36}>11^{24}\)
b) Ta có: \(5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì \(125^{100}< 243^{100}\) nên \(5^{300}< 3^{500}\)
c)Ta có: \(16^{19}=\left(2^4\right)^{19}=2^{76}\)
\(8^{20}=\left(2^3\right)^{20}=2^{60}\)
Vì \(2^{76}>2^{60}\) nên \(16^{19}>8^{20}\)
d) Ta có: \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
Vì \(5^{20}< 5^{21}\) nên \(625^5< 125^7\)
a, Ta có : \(5^{36}=5^{3.12}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=11^{2.12}=\left(11^2\right)^{12}=121^{12}\)
Vì : \(121^{12}< 125^{12}\Rightarrow11^{24}< 5^{36}\)
b,Ta có : \(5^{300}=5^{3.100}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=3^{5.100}=\left(3^5\right)^{100}=243^{100}\)
Vì : \(125^{100}< 243^{100}\Rightarrow5^{300}< 3^{500}\)
c, Ta có : \(16^{19}=\left(2^4\right)^{19}=2^{76}\)
\(8^{20}=\left(2^3\right)^{20}=2^{60}\)
Vì : \(2^{76}>2^{60}\Rightarrow16^{19}>8^{20}\)
d, Ta có : \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
Vì : \(5^{20}< 5^{21}\Rightarrow625^5< 125^7\)