K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2017

-Thêm điều kiện góc C = góc F để tam giác ABC = tam giác DEF (g-c-g)

-Thêm điều kiện BC = EF để tam giác ABC = tam giác DEF ( c.huyền - c.g.vuông )

- Thêm điều kiện AB = DE để tam giác ABC = tam giác DEF ( c-g-c)

6 tháng 2 2017

2. Xét tam giác ABH và tam giác ACK có :

AB = AC (tam giác ABC cân tại A)

Góc A chung

góc AKC = góc AHB ( = 90 độ )

=>Tam giác AKC và tam giác ABH (c.huyền-g.nhọn)

=>AH = AK ( cặp cạnh t/ứng )

19 tháng 1 2017

* cần các điều kiện về cạnh như:

AB = DE => tam giác ABC = tam giác DEF theo trường hợp hai cạnh góc vuông

BC = EF => tam giác ABC = tam giác DEF theo trường hợp cạnh huyền- cạnh góc vuông

* cần thêm các điều kiện về góc như

Góc C = Góc F => tam giác ABC = tam giác DEF theo trường hợp cạnh góc vuông- góc nhọn kề cạnh ấy

5 tháng 2 2017

kb với em nhé chị KANEKI KEN nè

7 tháng 3 2020

tam giác ABC và tam giác DEF 

góc A=góc D

AC=DF

Bổ sung ĐK về cạnh AB=DE thì tam giác ABC = tam giác DEF  (c.g.c)

Bổ sung ĐK về góc : góc C = góc F thì tam giác ABC = tam giác DEF  (g.c.g)

9 tháng 4 2019

A, 

xét \(\Delta ABD\)và \(\Delta ACD\)

CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)

SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C)  (1)

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)

MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90

B,  (1) => BC=DC=1/2 BC=8

ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ

\(AB^2=AD^2+BD^2\)

=> AD^2=36

=>AD=6

9 tháng 4 2019

c, vì M là trọng tâm nên AM=2/3AD=4

d

17 tháng 5 2020

1) Xét 2 tam giác vuông ΔACH và ΔBCH ta có:

AC = AB (tam giac ABC can tai C)

CH: cạnh chung

=> ΔACH = ΔBCH (c.h - c.g.v)

=> AH = BH (2 cạnh tương ứng)

=> H là trung điểm của AB

2) Có: ΔACH = ΔBCH (câu 1)

\(\Rightarrow\widehat{ACH}=\widehat{BCH}\) (2 góc tương ứng)

Xét ΔΔCD và ΔBCD ta có:

AC = AB (tam giac ABC can tai C)

\(\widehat{ACH}=\widehat{BCH}\left(cmt\right)\)

CD: cạnh chung

=> ΔACD = ΔBCD (c - g - c)

=> AD = BD (2 cạnh tương ứng)

=> Tam giác ADB cân tại D

3) Xét ΔADK và ΔADH ta có:

AK = AH (GT)

\(\widehat{KAD}=\widehat{HAD}\left(GT\right)\)

AD: cạnh chung

=> ΔADK = ΔADH (c - g - c)

\(\Rightarrow\widehat{AKD}=\widehat{AHD}\) (2 góc tương ứng)

Mà: \(\widehat{AHD}=90^0\Rightarrow\widehat{AKD}=90^0\)

=> AK ⊥ DK

Hay: AC ⊥ DK

4) Có: H là trung điểm của AB (câu 1)

=> \(AH=\frac{1}{2}AB=\frac{1}{2}.8=4\left(cm\right)\)

ΔAHD vuông tại H. Áp dụng định lý Pitago ta có:

AD2 = AH2 + DH2

=> DH2 = AD2 - AH2 = 52 - 42 (cm)

=> DH2 = 25 - 16 = 9 (cm)

=> DH = 3 (cm)