K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1)  ⋮  d ⇒ 17  ⋮  d ⇒ d ∈ {1, 17}. 

Ta có 2n - 1  ⋮  17 ⇔  2n - 18  ⋮  17 ⇔ 2(n - 9)  ⋮  17 ⇔ n - 9 ⋮   17  ⇔ n = 17k + 9 (k ∈N).

Nếu n = 17k + 9 thì 2n - 1  ⋮  17, và 9n + 4 = 9(17k + 9) + 4 = bội 17 + 85  ⋮  17, do đó (2n - 1, 9n + 4) = 17.

Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó (2n - 1, 9n + 4) = 1.

3 tháng 9 2016

Gọi d = ƯCLN(2n - 1; 9n + 4) (d thuộc N*)

=> 2n - 1 chia hết cho d; 9n + 4 chia hết cho d

=> 9.(2n - 1) chia hết cho d; 2.(9n + 4) chia hết cho d

=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d

=> (18n + 8) - (18n - 9) chia hết cho d

=> 18n + 8 - 18n + 9 chia hết cho d

=> 17 chia hết cho d

=> d thuộc {1 ; 17}

+ Với d = 17 thì 2n - 1 chia hết cho 17; 9n + 4 chia hết cho 17

=> 2n - 1 - 17 chia hết cho 17; 9n + 4 - 85 chia hết cho 17

=> 2n - 18 chia hết cho 17; 9n - 81 chia hết cho 17

=> 2.(n - 9) chia hết cho 17; 9.(n - 9) chia hết cho 17

Mà (2;17)=1; (9;17)=1 => n - 9 chia hết cho 17

=> n = 17.k + 9 (k thuộc N)

Vậy với n = 17.k + 9 (k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 17

Với n khác 17.k + 9 (k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 1

21 tháng 8 2023

Gọi d = (2n-1) ;(9n+4) ⇒ 2n-1 ; 9n+4 ⋮ d 

⇒ 2 (9n+4) - 9(2n-1) = 18n+8 - 18n+9 = 17 ⋮ d 

⇒d=1 hoặc d= 17 

Nếu 1 trong 2 số 2n-1 ; 9n+4 ⋮ 17 thì ƯCLN(2n-1;9n+4) = 17 

Nếu 1 trong 2 số 2n-1 ; 9n+4 ∅ ⋮ 17 thì ƯCLN (2n-1;9n+4) = 1

17 tháng 1 2024

Gọi d = (2n-1) ;(9n+4) ⇒ 2n-1 ; 9n+4 ⋮ d 

⇒ 2 (9n+4) - 9(2n-1) = 18n+8 - 18n+9 = 17 ⋮ d 

⇒d=1 hoặc d= 17 

Nếu 1 trong 2 số 2n-1 ; 9n+4 ⋮ 17 thì ƯCLN(2n-1;9n+4) = 17 

Nếu 1 trong 2 số 2n-1 ; 9n+4 ∅ ⋮ 17 thì ƯCLN (2n-1;9n+4) = 1

21 tháng 11 2015

 

Gọi d =(2n-1; 9n+4) => 2n-1 ; 9n+4 chia hết cho d

=> 2(9n+4) -9(2n-1) = 18n +8 - 18n +9 =17 chia hết ho d

=> d =1 hoặc d =17

Nếu 1 trong 2 số 2n-1; 9n+4 chia hết cho 17 thì UCLN(2n-1;9n+4) =17

Nếu 1 trong 2 số 2n-1; 9n+4 không chia hết cho 17 thì UCLN(2n-1; 9n+4) =1

 

Gọi d =(2n-1; 9n+4) => 2n-1 ; 9n+4 chia hết cho d

=> 2(9n+4) -9(2n-1) = 18n +8 - 18n +9 =17 chia hết ho d

=> d =1 hoặc d =17

Nếu 1 trong 2 số 2n-1; 9n+4 chia hết cho 17 thì UCLN(2n-1;9n+4) =17

Nếu 1 trong 2 số 2n-1; 9n+4 không chia hết cho 17 thì UCLN(2n-1; 9n+4) =1

17 tháng 11 2017

Vì 396 : a dư 30 nên a > 30

Theo bài ra ta có : 

396 chia a dư 30 

=> ( 396 - 30 ) \(⋮\)a => 366  \(⋮\)a

Lại có : 473 chia a dư 23

=> ( 473 - 23 ) \(⋮\)a => 450 \(⋮\)a

Từ (1) và (2) => a \(\in\)ƯC( 366;450)

Ta có : 366 = 2 .3 . 61

             450 = 2 . 32 . 52

Khi đó ƯCLN( 366;450 ) = 2 . 3 = 6

=> ƯC( 366;450 ) = Ư(6) = { 1 ;2 ; 3 ; 6 }

Vậy a \(\in\){1;2;3;6}

27 tháng 10 2018

a.1

b.1

c.1

1 tháng 11 2020

Giải thế ai hiểu nổi hả trời???