K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

A D C B I K P

Ta có \(\widehat{AIP}=\widehat{DAP}\)  (Cùng phụ với góc ADI) nên  \(\Delta IAP\sim\Delta ADP\left(g-g\right)\)

\(\Rightarrow\frac{AP}{DP}=\frac{AI}{DA}\Rightarrow\frac{AP}{DP}=\frac{AK}{DC}\)

Lại có \(\widehat{IAD}=\widehat{ADP}\) nên \(\widehat{PAK}=\widehat{PDC}\)   (Cùng phụ với hai góc trên)

Vậy nên \(\Delta PAK\sim\Delta PDC\left(c-g-c\right)\)

\(\Rightarrow\widehat{APK}=\widehat{DPC}\)

\(\Rightarrow\widehat{APK}+\widehat{KPD}=\widehat{DPC}+\widehat{KPD}\)

\(\Rightarrow\widehat{APD}=\widehat{KPC}\)

\(\Rightarrow\widehat{KPC}=90^o\)

Vậy nên CP vuông góc KP.

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
21 tháng 2 2018

  a, Chứng minh AC song song với PB nha các bạn


 

22 tháng 2 2018

a/ \(\Delta AKC\)và \(\Delta BKP\)có: AK = KP (gt)

\(\widehat{AKC}=\widehat{BKP}\)(đối đỉnh)

KC = BK (gt)

=> \(\Delta AKC\)\(\Delta BKP\)(c - g - c) => \(\widehat{KAC}=\widehat{BPK}\)(hai góc tương ứng) ở vị trí so le trong

=> AC // PB (đpcm)

a: ΔAHB vuông tại H

=>AH<AB

b: Xét ΔKAD vuông tại K và ΔHBA vuông tại H có

AD=BA

góc KAD=góc HBA

=>ΔKAD=ΔHBA

=>KD=HB và AK=BH

a: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB=CE

c: Ta có: ABEC là hình bình hành

nên \(\widehat{BAC}=\widehat{BEC}\)

4 tháng 1 2022

Cho em phần c nữa ạ khocroi