Cho tổng \(M=2+2^2+2^3+2^4+...+2^{100}\)
a) Tổng M có chia hết cho 31 không ? Vì sao ?
b) Tính tổng M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : 23=8 vì tất cả các số 8;16;32;64;128;256;512 dều không chia hết cho 3
24=16 nên 23+24+25+26+27+28+29 không chia hết cho 3 hay Mkhoong chia hết cho 3
25=32
26=64
27=128
28=256
29=512
Bài 4:
a chia 11 dư 5 dạng tổng quát của a là:
\(a=11k+5\left(k\in N\right)\)
b chia 11 dư 6 dạng tổng quát của b là:
\(b=11k+6\left(k\in N\right)\)
Nên: \(a+b\)
\(=11k+5+11k+6\)
\(=\left(11k+11k\right)+\left(5+6\right)\)
\(=k\cdot\left(11+11\right)+11\)
\(=22k+11\)
\(=11\cdot\left(2k+1\right)\)
Mà: \(11\cdot\left(2k+1\right)\) ⋮ 11
\(\Rightarrow a+b\) ⋮ 11
Bài 1: Mình làm rồi nhé !
Bài 2:
a) Dạng tổng quát của A là:
\(a=36k+24\left(k\in N\right)\)
b) a chia hết cho 6 vì:
Ta có: \(36k\) ⋮ 6 và 24 ⋮ 6
\(\Rightarrow a=36k+24\) ⋮ 6
c) a không chia hết cho 9 vì:
Ta có: \(36k\) ⋮ 9 và 24 không chia hết cho 9
\(\Rightarrow a=36k+24\) không chia hết cho 9
ko chia hết.Vì 1+2+3+.......+13 \(⋮\) 1+2+....+13 mà 14 ko\(⋮\) cho 1+2+.......+13
Ta có:M=23+24+25+...+28+29
=(23+24)+(25+26)+..+(28+29)
=23(1+2)+25(1+2)+...+28(1+2)
=23.3+25.3+...+28.3
=3(23+25+...+28)
\(\Rightarrow\)M\(⋮\)3
Vậy.....
A=\(2\left(1+2\right)+2^3\left(1+2\right)+...+2^8\left(1+2\right)\)
\(=2.3+2^3.3+...+2^8.3\)
\(=3\left(2+2^3+...+2^8\right)\)chia hết cho 3
=>\(A\)chia hết cho 3
a) \(M=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow M=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(\Rightarrow M=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(\Rightarrow M=2.31+...+2^{96}.31\)
\(\Rightarrow M=\left(2+...+2^{96}\right).31⋮31\)
\(\Rightarrow M⋮31\)
b) \(M=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2M=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2M-M=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow M=2^{101}-2\)
a) M = 2 + 22 + 23 + ... + 2100
= (2+22+23+24+25) + (26+27+28+29+210) + ... + (296+297+298+299+2100)
= 2(1+2+22+23+24) + 26(1+2+22+23+24) + ... + 296(1+2+22+23+24)
= 31(2+26+...+296) \(⋮\) 31
b) M = 2 + 22 + ... + 2100
=> 2M = 22 + 23 + ... + 2101
=> 2M - M = 2101 - 2
=> M = 2101 - 2