CMR : a3 + b3 chia hết cho 6 <=> a + b chia hết cho 6
Giúp mình nhé! Mình cần gấp!!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Đặt \(a+4b\) là x; \(10a+b\) là y (\(x,y>0\))
Ta có:
\(10x-y=10\left(a+4b\right)-\left(10a+b\right)=10a+40b-10a-b=39b\)
Vì \(39b⋮10\)
\(\Leftrightarrow10x-y⋮13\)
Theo đề bài ta có \(x⋮13\)
\(\Leftrightarrow10x⋮13\)
\(\Rightarrow y⋮13\)
Hay \(10a+b⋮13\) (ĐPCM)
Đặt A = a + 4b; B = 10a + b
Xét hiệu: 4B - A = 4.(10a + b) - (a + 4b)
= 40a + 4b - a - 4b
= 39a
Mà (4;13)=1 \(\Rightarrow B⋮13\left(1\right)\)
Từ (1) và (2) => đpcm
Giả sử: abc+ ( 2a+3b+c) chia hết cho 7, ta có:
abc+ ( 2a+3b+c)= a.100+b.10+c+2a+3b+c
= a.98+7.b
Vì a.98 chia hết cho 7 ( 98 chia hết cho 7 ), 7.b chia hết cho 7 => a.98+7.b chia hết cho 7
=> abc+ ( 2a+3b+c) chia hết cho 7
Mà theo đầu bài abc chia hết cho 7 => 2a+3b+c chia hết cho 7 (theo tính chất chia hết của một tổng)
A,Theo bài ra ta có:
abc=100a+10b+c
Lấy abc-2a+3b+c ta được : 98a+7b
Suy ra : 98a+7b=7(28a+b) chia hết cho 7
Vì abc chia hết cho 7 nên ta có thể suy ra 2a+3b+c chia hết cho 7
B, Theo bài ra ta có:
ab=10a+b
Lấy ab - 3a+b ta được : 7a chia hết cho7
Vì ab chia hết cho 7 nên ta suy ra 3a+b chia hết cho 7
Nếu muốn chứng minh ngược lại thì phân tích các số ab , abc thành tổng của các số 2a+3b+c , 3a+b
TH1: a, b, c có ít nhất 1 số chi hết cho 7
=> abc chia hết cho 7
=> Đpcm
TH2: a, b, c không có số nào chia hết cho 7
=> a, b, c chia 7 dư từ 1 đến 6
=> a^3, b^3, c^3 chia 7 dư 1 hoặc 6 (đã được CM)
(Bạn có thể tự CM bằng công thức sau:
VD: a chia 7 dư r => a = 7k + r (với k là thương)
=> a^3 = (7k + r)^3 )
=> a^3, b^3, c^3 có ít nhất 2 số cùng số dư
=> (a^3 - b^3)(b^3 - c^3)(c^3 - a^3) có ít nhất 1 cặp số chia hết cho 7
=> Đpcm
a: \(a^3-a=a\left(a-1\right)\left(a+1\right)\)
Vì a;a-1;a+1 là ba số nguyên liên tiếp
nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)
hay \(a^3-a⋮6\)
ĐK: a;b ϵ Z
Xét hiệu: (a3 + b3) - (a + b)
= (a3 - a) + (b3 - b)
= a.(a2 - 1) + b.(b2 - 1)
= a.(a - 1).(a + 1) + b.(b - 1).(b + 1)
Dễ thấy: a.(a - 1).(a + 1) và b.(b - 1).(b + 1) đều chia hết cho 2 và 3 vì đều là tích 3 số nguyên liên tiếp
Mà (2;3)=1 => a.(a - 1).(a + 1) + b.(b - 1).(b + 1) đều chia hết cho 6
=> (a3 + b3) - (a + b) chia hết cho 6
=> a + b chia hết cho 6 (1)
=> a3 + b3 chia hết cho 6 (2)
Từ (1) và (2) => đpcm
Thank nhé !!!!!!