K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

theo bài ra ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ab}{cd}\left(1\right)\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\) ( tính chất dãy tỉ số bằng nhau )

tù 1 và 2 ta có: \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

Cách 1 :

Từ a/b = c/d => a/c = b/d ( tính chất tỉ lệ thức )

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

a/c = b/d = a+b/a-b = a-b/c-d => a+b/a-b = c+d/c-d ( tính chất tỉ lệ thức )

Vậy a+b/a-b = c+d/c-d

Cách 2:

Đặt : a/b = c/d = k

a/b = k => a= bk

c/d = k => c=dk

a+b/a-b = bk+b/ bk-b = b(k+1)/b(k-1) = k+1/k-1. (1)

c+d/c-d = dk+d/dk-d = d(k+1)/d(k-1) + k+1/k-1. (2)

Từ (1) và (2) suy ra a+b/a-b = c+d/c-d.

21 tháng 9 2017

Áp dụng dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{a}{b}.\dfrac{c}{d}=\dfrac{a+c}{b+d}.\dfrac{a+c}{b+d}\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\) \(\left(đpcm\right)\)

Chúc bạn học tốt!

13 tháng 10 2019

Đáng lẽ (a-b)2/ (a-d)2 là \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)chứ ? Có chép sai đề không vậy ?

Bài 1:

a) \(8^5\cdot8^2=8^7\)

b) \(9^3\cdot3^2=\left(3^2\right)^3\cdot3^2=3^6\cdot3^2=3^8\)

c) \(2^7\cdot5^7=10^7\)

d) \(27^6:3^3=\left(3^3\right)^6:3^3=3^{18}:3^3=3^{15}\)

Bài 2:

a) \(x^6:x^3=125\)

\(\Rightarrow x^3=125\)

\(\Rightarrow x=5\)

b) \(x^{20}=x\)

\(\Rightarrow x^{20}-x=0\)

\(\Rightarrow x\left(x^{19}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{19}-1=0\Rightarrow x=1\end{matrix}\right.\)

c) \(3^x\cdot3=243\)

\(\Rightarrow3^x=81\)

\(\Rightarrow x=4\)

d) \(2x-138=2^3\cdot3^2\)

\(\Rightarrow2x-138=72\)

\(\Rightarrow2x=200\)

\(\Rightarrow x=100\)

5 tháng 10 2017

Giải:

Bài 1:

a) \(8^5.8^2=8^{5+2}=8^7\)

b) \(9^3.3^2=3^6.3^2=3^{6+2}=3^8\)

c) \(2^7.5^7=\left(2.5\right)^7=10^7\)

d) \(27^6:3^3=3^{18}:3^3=3^{18-3}=3^{15}\)

Bài 2:

a) \(x^6:x^3=x^{6-3}=x^3=125\)

\(\Leftrightarrow x=5\)

b) \(x^{20}=x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)

c) \(3^x.3=243\)

\(\Leftrightarrow3^{x+1}=243\)

\(\Leftrightarrow3^{x+1}=3^5\)

\(\Leftrightarrow x+1=5\Leftrightarrow x=4\)

d) \(2.x-138=2^3.3^2\)

\(\Leftrightarrow2.x-138=8.9\)

\(\Leftrightarrow2.x-138=72\)

\(\Leftrightarrow2.x=72+138\)

\(\Leftrightarrow2.x=210\Leftrightarrow x=105\)

Chúc bạn học tốt!

19 tháng 9 2016

\(a,12.5^2=300\)

\(b,704:8^2=704:64=11\)

\(c,2^2.2^7=2^{2+7}=2^9=512\)

\(d,\left(96:24\right)^3=4^3=64\)

19 tháng 9 2016

12.5 mũ 2 = 300

704 : 8 mũ 2 = 11

2 mũ 2 . 2 mũ 7 = 512

(96:24) mũ 3 = 64

2 tháng 8 2023

`A = 2 + 2^2+ ... + 2^2017`

`=> 2A = 2^2 + 2^3 + ... + 2^2018`

`=> 2A - A = (2^2 + 2^3 + ... + 2^2018) - (2 + 2^2 + ... +2^2017)`

`=> A         = 2^2018 - 2`

`B = 1 + 3^2 + ... + 3^2018`

`=> 3^2B = 3^2 + 3^4 + ... + 3^2020`

`=> 9B-B =(3^2 + 3^4 + ... + 3^2020) - (1 + 3^2 + ... + 3^2018`

`=> 8B     = 3^2020 - 1`

`=> B       = (3^2020 - 1)/8`

`C = 5 + 5^2 - 5^3 + ... + 5^2018`

`=> 5C = 5^2 + 5^3 - 5^4 + ... +5^2019`

`=> 5C + C = ( 5^2 + 5^3 - 5^4 + ... 5^2019) + (5 + 5^2 - 5^3 + ... + 5^2018)`

`=> 6C = 55 + 5^2019`

`=> C  = (5^2019 + 55)/6`

2 tháng 10 2016

a) x^2 = 9   =>  x=3 hoặc x = -3

b) x^2 = 5   =>  \(x=\sqrt{5}\)

c) x^2 - 4 = 0

 => x^2 = 4             =>   x = 2     hoặc      x = -2

d) x^2 + 1 = 82

=>  x^2 = 81     =>     x = 9 hoặc  x = -9

e)  (2x)^2 = 6 

=>  4 . x^2 = 6     

=> x^2 = 3/2           

=> \(x=\sqrt{\frac{3}{2}}\)

f) (x-1)^2 = 9

=> x-1 = 3     hoặc x - 1 = -3

=> x = 4             hoặc  -2

g) (2x+3)^2  =  25

=> 2x + 3 = 5               hoặc        2x + 3 = -5

=> x = 1                      hoặc          x = -4

2 tháng 10 2016

Ta có: 

a, \(x^2=9\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

b, \(x^2=5\Rightarrow\orbr{\begin{cases}x=2,5\\x=-2.5\end{cases}}\)

Các câu còn lại tương tự nhé bn

13 tháng 10 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
                                         \(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
                                          \(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)