K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HN
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
VM
7 tháng 3 2020
3. Cho tam giác ABC vuông tại A. Theo định lí Pitago ta có:
A. AC mũ 2= AB mũ 2 + BC mũ 2 B. AB mũ 2= AC mũ 2 + BC mũ 2
C. BC mũ 2 = AB mũ 2 + AC mũ 2 D. BC mũ 2 = AB mũ 2 - AC mũ 2
Chúc bạn học tốt!
21 tháng 9 2017
Theo đề bài:
\(\dfrac{a}{b}=\dfrac{c}{d}=h\)
\(\Rightarrow\left\{{}\begin{matrix}a=bh\\c=dh\end{matrix}\right.\)
Khi đó:
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bh+b}{dh+d}\right)^2=\left[\dfrac{b\left(h+1\right)}{d\left(h+1\right)}\right]^2=\dfrac{b^2}{d^2}=\dfrac{b}{d}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{bh^2+b^2}{dh^2+d^2}=\dfrac{b^2\left(h^2+1\right)}{d^2\left(h^2+1\right)}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\)
Ta có điều phải chứng minh
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)