K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2016

Đặt \(A=1+3+...+2n-1\)

Tổng A có số số hạng là:

\(\frac{\left[\left(2n-1\right)-1\right]}{2}+1=\frac{2n-1-1}{2}+\frac{2}{2}=\frac{2n-2+2}{2}=\frac{2n}{n}=n\)(số)

Tổng A theo n là:

\(\frac{\left(2n+1+1\right)\cdot n}{2}=\frac{\left(2n+2\right)\cdot n}{2}=\frac{2n\left(n+1\right)}{2}=n\left(n+1\right)\)

Thay A vào ta có:

\(n\left(n+1\right)=1225\)

.... ?Đề sai?.....

18 tháng 12 2016

Có số số hạng là :

( 2n -1 - 1): 2 + 1 = ( 2n- n ) : 2 + 1 = 2.( n-1 ) :2 + 1 = n-1+1= n ( số hạng )

Tổng trên là :

( 2n -1 + 1 ) .n : 2 = ( 2n . n ) : 2 = n2

\(\Rightarrow\) n2 = 1225

n2 = 352

\(\Rightarrow\) n = 35

AA
23 tháng 10 2016

Tổng bên vế trái là tổng dãy số cách đều 2 đơn vị. 

Đặt S = 1 + 3 + ... + (2n-1), ta viết lại S theo thứ tự ngược lại ta có:

      S = (2n -1) + (2n-3) + ...+ 2 + 1

Cộng các vế với nhau ta có:

    2S = [1 + (2n-1)] + [2 + (2n-2)] + ... + [(2n-1) + 1]

          = 2n + 2n + ,,,               (có [(2n-1) - 1]:2 + 1 = n số hạng)

         = 2n, n     

=> S = n2

Vậy n2 = 1225 

=> n = 35

22 tháng 10 2016

Số số hạng:

(2n - 1 - 1) : 2 + 1 = (2n - 2) : 2 + 1 = 2(n - 1) : 2 + 1 = n - 1 + 1 = n (số hạng)

Tổng trên là:

\(\frac{\left(2n-1+1\right)\times n}{2}=\frac{2n\times n}{2}=n^2\)

=> n2 = 1225

n2 = (\(\pm\) 35)2

n = \(\pm\) 35

mà n thuộc N

=> n = 35

13 tháng 10 2016

\(1.1+3+5+.....+\left(2n-1\right)=1225.\)

\(\Leftrightarrow\left\{\left[\left(2n-1\right)+1\right].\left[\left(2n-1\right)-1\right]:2+1\right\}=1225\)

\(\Leftrightarrow\left(2n.2n\right):4=1225\)

\(\Rightarrow n^2=1225\)

\(\Rightarrow n^2=35^2\)

\(\Rightarrow n=35\)

13 tháng 10 2016

thanks bn kudo heng

20 tháng 11 2014

Bài 1 :

Gọi số đó là a (a \(\in\) N)

Ta có :

a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3

a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5

a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7 

\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)

Mà a nhỏ nhất nên a + 2 nhỏ nhất 

\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)

\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103

 

 

9 tháng 1 2017

Bài 1 :

Gọi số đó là a (a ∈ N)

Ta có :

a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3

a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5

a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7 

⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)

Mà a nhỏ nhất nên a + 2 nhỏ nhất 

⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)

⇒a + 2 = 105 

3 tháng 11 2016

hâm mộ khởi my tk mk vs bn 

21 tháng 11 2014

3a)

1+2+3+4+5+...+n=231

=> (1+n).n:2=231

(1+n).n=231.2

(1+n).n=462

(1+n).n=2.3.7.11

(1+n).n=(2.11).(3.7)

(1+n).n=22.21

=>n=21

2 tháng 11 2016

gọi d là ước chung của n+3 và 2n+1 . Ta có (2n+6)chia hết cho d và 2n+5 chia hết cho d suy ra (2n+6)-(2n+5)chia hết cho d suy ra 1chia hết cho d vậy d=1   nhớ kết bạn với mình nhé

27 tháng 7 2023

Bài 6 :

a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)

b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)

c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)

d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)

27 tháng 7 2023

Bài 7 :

a) \(3^x+3^{x+2}=9^{17}+27^{12}\)

\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)

\(\Rightarrow10.3^x=3^{34}+3^{36}\)

\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)

\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)

b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)

\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)

\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)

c) Bài C bạn xem lại đề

d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)

\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)

\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)

\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)

\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)

\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)

NV
15 tháng 1 2024

a.

\(1+2+3+...+n=820\)

\(\Leftrightarrow\dfrac{n\left(n+1\right)}{2}=820\)

\(\Leftrightarrow n\left(n+1\right)=1640\)

\(\Leftrightarrow n\left(n+1\right)=40.41\)

\(\Rightarrow n=40\)

b.

\(\left(n+5\right)⋮\left(n+1\right)\)

\(\Rightarrow\left(n+1\right)+1⋮n+1\)

\(\Rightarrow n+1=Ư\left(1\right)\)

\(\Rightarrow\left[{}\begin{matrix}n+1=-1\\n+1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}n=-2\notin N\left(loại\right)\\n=0\end{matrix}\right.\)

c.

\(\left(2n+7\right)⋮\left(n+2\right)\)

\(\Rightarrow\left(2n+4+3\right)⋮\left(n+2\right)\)

\(\Rightarrow2\left(n+2\right)+3⋮\left(n+2\right)\)

\(\Rightarrow3⋮\left(n+2\right)\)

\(\Rightarrow n+2=Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)

Do n tự nhiên \(\Rightarrow n\ge0\Rightarrow n+2\ge2\)

\(\Rightarrow n+2=3\)

\(\Rightarrow n=1\)