K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

θÅ

9 tháng 11 2016

số hạng cuối của B phải là 3^1992 mới đúng

a, nhóm 3 số hạng liền nhau thì ta có

B=(3+3^5+3^9) +...+ [3^n+3^(n+4)+3^(n+5)] +...+ (3^1984+3^1988+3^1992)

xét số hạng tổng quát: 3^n+3^(n+4)+3^(n+5)= 3^n .(1+3^4+3^8)=

=3^n . (3^3-1)(3^3+1)(3^6+1)/(3^4-1)

=3^n . 26 .(3^3+1)(3^6+1)/(3^4-1)

vậy B chia hết cho 26, hay B chia hết cho 13

9 tháng 10 2019

câu a nhóm 4 số lại(mũ liên tiếp)

câu b nhóm 4 số lại(mũ liên tiếp)

9 tháng 10 2019

bạn ơi, bạn có thể giải chi tiết đc ko!rồi mình cho.

19 tháng 9

calibudaicho

18 tháng 1 2021

a)

Ta có: \(222^{333}=\left(222^3\right)^{111}\equiv1^{111}=1\left(mod13\right)\)

\(\Rightarrow222^{333}+333^{222}\equiv1+333^{222}=1+\left(333^2\right)^{111}\)

\(\equiv1+12^{111}\equiv1+12^{110}\cdot12\equiv1+\left(12^2\right)^{55}\cdot12\)

\(\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $222^{333}+333^{222}$ chia hết cho $13.$

b) Ta có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv1^{35}\equiv1\) (mod13)

\(\Rightarrow3^{105}+4^{105}\equiv1+4^{105}\equiv1+\left(4^3\right)^{35}\)

\(\equiv1+12^{35}\equiv1+\left(12^2\right)^{17}\cdot12\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $3^{105}+4^{105}$ chia hết cho $13.$

Lại có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv5^{35}\equiv\left(5^5\right)^7\equiv1\left(mod11\right)\)

\(4^{105}\equiv\left(4^3\right)^{35}\equiv9^{35}\equiv\left(9^5\right)^7\equiv1\left(mod11\right)\)

Từ đây:\(3^{105}+4^{105}\equiv1+1\equiv2\left(mod11\right)\)

Vậy $3^{105}+4^{105}$ không chia hết cho $11.$

P/s: Rất lâu rồi không giải, không chắc.

10 tháng 10 2020

các pạn ơi mình cần gấp lắm lun 

giải hộ mk với

10 tháng 10 2020

Ta có: 

\(B=3+3^2+3^3+...+3^{2020}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2019}+3^{2020}\right)\)

\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)

\(B=3\cdot4+3^3\cdot4+...+3^{2019}\cdot4\)

\(B=4\cdot\left(3+3^3+...+3^{2019}\right)\) chia hết cho 4

=> đpcm

21 tháng 9 2015

b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)

=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)

=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)

=3+3^2.13+3^5.13+.........+3^58.13

=3.13.(3^2+3^5+....+3^58)

vi tich tren co thua so 13 nen tich do chia het cho 13

=

21 tháng 9 2015

bai1

a) A=(31+32)+(33+34)+...+(359+360)

=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)

=3^1.(1+3)+...+3^59.(1+3)

=3^1.4+....+3^59.4

=4.(3^1+...+3^59)

vi tich tren co thua so 4 nen tich do chia het cho 4

24 tháng 10 2016

Ta có :

Đã có :3+3^2+....+3^100 chia hết cho 3.
Mặt khác : 3+3^2+....+3^100

=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^97+3^98+3^99+36100) (có 25 cặp, mỗi cặp 4 số )
=3.40+35.40+...+397.40chia hết cho 40
Vì ƯCLN(40,3)=1 nên dãy trên chia hết cho 40.3=120

24 tháng 10 2016

B=3+32+...+3100

=(3+32+33+34)+...+(397+398+399+3100)

=3.(3+32+33+34)+...+397.(3+32+33+34)

=3.120+...+397.120

=120.(3+...+397) chia hết cho 120

31 tháng 10 2016

B = 3 + 32 + 33 + 34 + ... + 32010

Ta có : Số số hạng của dãy số B là khoảng cách từ 1 ---> 2010 mỗi số cách nhau 1 đơn vị .

=> Số số hạng của dãy số B là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số hạng )

Vậy ta có số nhóm là :

2010 : 2 = 1005 ( nhóm )

B = ( 3 + 32 ) + ( 33 + 34 ) +... + ( 32009 + 22010 )

B = ( 3 + 32 ) + 32 ( 3 + 32 ) + ... + 32008 ( 3 + 32 )

B = 1 . 12 + 32 . 12 + ... + 32008 . 12

B = ( 1 + 32 + ... + 32008 ) . 12

Mà : 12 = 3 . 4 và 1 + 32 + ... + 32008 \(\in\) N

=> B chia hết cho 4

Câu sau tương tự

31 tháng 10 2016

hộ nốt câu cuối đc ko ??

26 tháng 7 2017

Tổng B có : ( 2010-1 ) : 1 + 1 = 2010 ( số hạng )

+) CM : \(B⋮4\)

\(B=3^1+3^2+3^3+...+3^{2010}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\) (Có 2010:2=1005 nhóm)

\(B=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{2009}.\left(1+3\right)\)

\(B=3.4+3^3.4+...+3^{2009}.4\)

\(B=4.\left(3+3^3+...+3^{2009}\right)⋮4\)(ĐPCM)

+) CM :\(B⋮13\)

\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)(Có 2010:3=670 nhóm)

\(B=3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{2008}.\left(1+3+3^2\right)\)

\(B=3.13+3^4.13+...+3^{2008}.13\)

\(B=13.\left(3+3^4+...+3^{2008}\right)⋮13\)(ĐPCM)