cho tứ giác BCDE có \(\widehat{B}\)=120o và \(\widehat{E}\)=60o. Tính \(\widehat{D}\)và \(\widehat{C}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Rightarrow\widehat{A}+\widehat{B}=360^o-\left(\widehat{C}+\widehat{D}\right)\)
\(\Rightarrow\widehat{A}+\widehat{B}=360^o-\left(60+80\right)=220^o\)
mà \(\widehat{A}-\widehat{B}=10^o\)
\(\Rightarrow\widehat{A}=\left(220-10\right):2=105^o\)
\(\Rightarrow\widehat{B}=105-10=95^o\)
Vậy \(\left\{{}\begin{matrix}\widehat{A}=105^o\\\widehat{B}=95^o\end{matrix}\right.\)
a) BA=BC(gt)
⇒B thuộc đường trung trực AC
DA=DC(gt)
⇒D thuộc đường trung trực AC
B và D là đường phân biệt cùng thuộc 1 đường trung trực AC nên đường thẳng BD là đường trung trực của AC
b) Xét △BAD và △BCD,có:
BA=BC
DA=DC
BC chung
⇒△BAD=△BCD(ccc)⇒góc BAD= góc BCD
Ta có BAD+BCD+ABC+ADC=360
2BAD=360-ABC-ADC
2BAD=360-100-80
2BAD=180
⇒BAD=BCD=180/2=80
góc C-góc D=200-180=20 độ
góc C+góc D=120 độ
=>góc C=(20+120)/2=70 độ và góc D=120-70=50 độ
góc B=200-70=130 độ
góc A=180-70=110 độ
a) Ta có : AB=BC và CD=DA (đề bài)
⇒ BD là đường trung trực của AC
b) Ta có : AB=BC (đề bài)
⇒ Δ ABC cân tại B
⇒ Góc BAC = Góc BCA
Tương tự ta chứng minh Góc DAC = Góc DCA (CD=AD...)
mà Góc A = Góc BAC + Góc DAC
Góc C = Góc BCA+ Góc DCA
⇒ Góc A = Góc C
mà A + B + C +D =360; B=100o ; D=80o
⇒ A + C =360 - (100 + 80) = 240
⇒ A = C = 240 : 2 = 120o
\(\widehat{D}=\dfrac{3}{2}\widehat{B}=\dfrac{3}{2}.60^0=90^0\)
\(\widehat{D}=\dfrac{4}{3}\widehat{C}\Rightarrow\widehat{C}=\dfrac{3}{4}\widehat{D}=\dfrac{3}{4}.90^0=67,5^0\)
\(\widehat{A}=360^0-\widehat{B}-\widehat{C}-\widehat{D}=360^0-60^0-90^0-67,5^0=142,5^0\)
Đề thiếu dữ kiện bạn nhé, chỉ tính được tổng của góc D và góc C thôi.