K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left(x+\dfrac{1}{4}\right)+\left(3x-4\right)+2\left(x-3\right)=1\)

=>\(x+\dfrac{1}{4}+3x-4+2x-6=1\)

=>\(6x-\dfrac{39}{4}=1\)

=>\(6x=1+\dfrac{39}{4}=\dfrac{43}{4}\)

=>\(x=\dfrac{43}{4}:6=\dfrac{43}{24}\)

b: \(2\left(x-3\right)=3\left(x+2\right)-x+1\)

=>\(2x-6=3x+6-x+1\)

=>2x-6=2x+7

=>-6=7(vô lý)

c: \(x\left(x+3\right)+x\left(x-2\right)=2x\left(x-1\right)\)

=>\(x^2+3x+x^2-2x=2x^2-2x\)

=>3x-2x=-2x

=>3x=0

=>x=0

d: \(\left(x-1\right)\cdot3x-2\left(x+2\right)-2x=x\left(x-1\right)\)

=>\(3x^2-3x-2x-4-2x=x^2-x\)

=>\(3x^2-7x-4-x^2+x=0\)

=>\(2x^2-6x-4=0\)

=>\(x^2-3x-2=0\)

=>\(x=\dfrac{3\pm\sqrt{17}}{2}\)

`#3107.101107`

\(x(x+5)(x-5) - (x+2)(x^2-2x+4)=5\)

`<=> x(x^2 - 25) - (x^3 + 2^3) = 5`

`<=> x^3 - 25x - x^3 - 8 = 5`

`<=> -25x - 8 = 5`

`<=> -25x = 13`

`<=> x = -13/25`

Vậy, `x = -13/25`

_____

\((x+1)^3 - (x-1)^3 -6(x-1)^2 = -19\)

`<=> x^3 + 3x^2 + 3x + 1 - (x^3 - 3x^2 + 3x - 1) - 6(x^2 - 2x + 1) = -19`

`<=> x^3 + 3x^2 + 3x + 1 - x^3 + 3x^2 - 3x + 1 - 6x^2 + 12x - 6 = -19`

`<=> (x^3 - x^3) + (3x^2 + 3x^2 - 6x^2) + (3x - 3x + 12x) + (1 + 1 - 6) = -19`

`<=> 12x - 4 = -19`

`<=> 12x = -15`

`<=> x = -15/12 = -5/4`

Vậy, `x = -5/4.`

________

`@` Sử dụng các hđt:

`1)` `A^2 + B^2 = (A - B)(A + B)`

`2)` `A^3 + B^3 = (A + B)(A^2 - AB + B^2)`

`3)` `(A - B)^3 = A^3 - 3A^2B + 3AB^2 - B^3`

`4)` `(A + B)^3 = A^3 + 3A^2B + 3AB^2 + B^3`

`5)` `(A - B)^2 = A^2 - 2AB + B^2.`

23 tháng 10 2023

a: \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=5\)

=>\(x\left(x^2-25\right)-x^3-8=5\)

=>\(x^3-25x-x^3-8=5\)

=>-25x=13

=>\(x=-\dfrac{13}{25}\)

b: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)

=>\(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-19\)

=>\(6x^2+2-6x^2+12x-6=-19\)

=>12x-4=-19

=>12x=-15

=>x=-5/4

3 tháng 8 2017

câu trên mk làm rồi

\(\dfrac{2x-1}{x-3}=\dfrac{2x+3}{x-1}\)

\(\Rightarrow\left(2x-1\right)\left(x-1\right)=\left(x-3\right)\left(2x+3\right)\)

\(\Rightarrow2x^2-x-2x+1=2x^2-6x+3x-9\)

\(\Rightarrow-x-2x+6x-3x=-1-9\)

\(\Rightarrow0=-10\) (vô lí)

Vậy ko tồn tại giá trị của x.

27 tháng 7 2016

Đăng từng câu đio

27 tháng 7 2016

Hỏi đáp Toán

9 tháng 2 2017

a) Đặt x^2+2x+2=t

\(\frac{4}{t-1}+\frac{3}{t+1}=\frac{3}{2}\Leftrightarrow\frac{4t+4+3t-3}{t^2-1}=\frac{7t+1}{t^2-1}=\frac{3}{2}\)

\(\Leftrightarrow14t+2=3t^2-3\Leftrightarrow3t^2-14t-5=3t\left(t-5\right)+t-5=0\)\(\Leftrightarrow\left(t-5\right)\left(3t+1\right)=0\Rightarrow\left[\begin{matrix}t=5\\t=-\frac{1}{3}\left(loai\right)\end{matrix}\right.\)

Với t=5 ta có (x+1)^2=4\(\Rightarrow\left[\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

11 tháng 2 2017

Sao lai co 3t(t-5) ,cho do thua

26 tháng 10 2017

quá chuẩn luôn !!!!!!!!

NHỚ L.I.K.E cho mk nha

26 tháng 10 2017

 a) (x+2)(x^2-2x+4)-x(x^2+2)=15 
<=> x^3 + 8 - x^3 - 2x = 15 
<=> -2x = 7 
<=> x = -7/2 

b) (x+3)^3-x(3x+1)^2+(2x+1)(4x^2-2x+1)=28 
<=> x^3 + 9x² + 27x + 27 - x(9x² + 6x + 1) + 8x^3 + 1 = 28 
<=> x^3 + 9x² + 27x + 27 - 9x^3 - 6x² - x + 8x^3 + 1 - 28 = 0 
<=> 3x² + 26x = 0 
<=> x(3x + 26) = 0 
Vậy x = 0 và x = -26/3 

c) (x^2-1)^3-(x^4+x^2+1)(x^2-1)=0 
<=> (x² - 1)[(x² -1)² - x^4 - x² - 1] = 0 
<=> (x-1)(x+1)(x^4 - 2x² + 1 - x^4 - x² - 1 ) = 0 
<=> -(x-1)(x+1)3x² = 0 
Vậy nghiệm là x = 1 ; -1 ; 0

22 tháng 7 2018

         \(x^2-5x-4\left(x-5\right)=0\)

\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)

Vậy....

\(2x\left(x+6\right)=7x+42\)

\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)

\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)

\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)

Vậy......

\(x^3-5x^2+x-5=0\)

\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\)

\(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy...