Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Ta có: \(\left(2x-3\right)^2-\left(2x-3\right)\left(x-10\right)=7\)
\(\Leftrightarrow4x^2-12x+9-2x^2+20x+3x-30=7\)
\(\Leftrightarrow11x=28\)
hay \(x=\dfrac{28}{11}\)
d: Ta có: \(\left(3x-4\right)^2-9\left(x-3\right)\left(x+3\right)=8\)
\(\Leftrightarrow9x^2-24x+16-9x^2+81=8\)
\(\Leftrightarrow-24x=-89\)
hay \(x=\dfrac{89}{24}\)
f: Ta có: \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Leftrightarrow x^2+8x+16-x^2+1=16\)
\(\Leftrightarrow8x=-1\)
hay \(x=-\dfrac{1}{8}\)
\(a,\Leftrightarrow x^3-4x^2+4x=0\\ \Leftrightarrow x\left(x^2-4x+4\right)=0\\ \Leftrightarrow x\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ b,\Leftrightarrow4\left(x-1\right)=3x+6\left(2x-3\right)\\ \Leftrightarrow4x-4=3x+12x-18\\ \Leftrightarrow11x=14\Leftrightarrow x=\dfrac{14}{11}\)
a/ \(x^3-4x^2=-4x\)
\(\Leftrightarrow x^3-4x^2+4x=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b/ \(\dfrac{x-1}{3}=\dfrac{x}{4}+\dfrac{2x-3}{2}\)
\(\Leftrightarrow8\left(x-1\right)=6x+12\left(2x-3\right)\)
\(\Leftrightarrow8x-8=6x+24x-36\)
\(\Leftrightarrow8x-8=30x-36\)
\(\Leftrightarrow8x-30x=8-36\)
\(\Leftrightarrow-22x=-28\)
\(\Leftrightarrow x=\dfrac{14}{11}\)
a) (x+3)^2 - (2-x)^2 = 1
x^2 + 6x + 9 - (4 - 4x + x^2) = 1
x^2 + 6x + 9 - 4 + 4x - x^2 = 1
10x + 5 = 1
10x = -4
x = -4/10
x = -2/5
Vậy giá trị của x là -2/5.
b) 5(x-2)^2 - (x+3)^2 = (2x-1)^2
5(x^2 - 4x + 4) - (x^2 + 6x + 9) = 4x^2 - 4x + 1
5x^2 - 20x + 20 - x^2 - 6x - 9 = 4x^2 - 4x + 1
4x^2 - 26x + 30 = 4x^2 - 4x + 1
-26x + 30 = -4x + 1
-22x = -29
x = 29/22
Vậy giá trị của x là 29/22.
c) (x-1)^2 - x(x+5)^2 = 7
x^2 - 2x + 1 - x(x^2 + 10x + 25) = 7
x^2 - 2x + 1 - x^3 - 10x^2 - 25x = 7
-x^3 - 9x^2 - 27x - 6 = 0
d) (3x-2)^2 - 9(x+2)^2 = 3
9x^2 - 12x + 4 - 9x^2 - 36x - 36 = 3
-48x - 32 = 3
-48x = 35
x = -35/48
Vậy giá trị của x là -35/48.
\(a,=x^2-4-x^2+2x+3=2x-1\\ b,=x^3+3x^2-5x-15+x^2-x^3+4x-4x^2=-x-15\\ c,=2x^2+3x-10x-15-2x^2+6x+x+7=-8\\ d,=\left(2x+1+3x-1\right)^2=25x^2\)
1:
a: =>(|x|+4)(|x|-1)=0
=>|x|-1=0
=>x=1; x=-1
b: =>x^2-4>=0
=>x>=2 hoặc x<=-2
d: =>|2x+5|=2x-5
=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0
=>x=0(loại)
v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4c^3\right)\)
\(=-\dfrac{1}{2}\left(2x+6-4c^3\right)+3\left(2x+6-4c^3\right)\)
\(=-x^2-3x+2c^3x+6x+18-12c^3\)
\(=-x^2+3x+2c^3x+18-12c^3\)
f) \(\left(2x-5\right)\left(x^2-x+3\right)\)
\(=2x\left(x^2-x+3\right)-5\left(x^2-x+3\right)\)
\(=2x^3-2x^2+6x-5x^2+5x-15\)
\(=2x^3-7x^2+11x-15\)
w) \(\left(3x+1\right)\left(x^2-2x-5\right)\)
\(=3x\left(x^2-2x-5\right)+\left(x^2-2x-5\right)\)
\(=3x^3-6x^2-15x+x^2-2x-5\)
\(=3x^3-5x^2-17x-5\)
x) \(\left(6x-3\right)\left(x^2+x-1\right)\)
\(=6x\left(x^2+x-1\right)-3\left(x^2+x-1\right)\)
\(=6x^3+6x^2-6x-3x^2-3x+3\)
\(=6x^3+3x^2-9x+3\)
y) \(\left(5x-2\right)\left(3x+1-x^2\right)\)
\(=5x\left(3x+1-x^2\right)-2\left(3x+1-x^2\right)\)
\(=15x^2+5x-5x^3-6x-2+2x^2\)
\(=-5x^3+17x^2-x-2\)
z) \(\left(\dfrac{3}{4}x+1\right)\left(4x^2+4x+4\right)\)
\(=\dfrac{3}{4}x\left(4x^2+4x+4\right)+\left(4x^2+4x+4\right)\)
\(=3x^3+3x^2+3x+4x^2+4x+4\)
\(=3x^3+7x^2+7x+4\)
f: =2x^3-2x^2+6x-5x^2+5x-15
=2x^3-7x^2+11x-15
w: =3x^3-6x^2-15x+x^2-2x-5
=3x^3-5x^2-17x-5
x: =6x^3+6x^2-6x-3x^2-3x+3
=6x^3+3x^2-9x+3
y: =(5x-2)(-x^2+3x+1)
=-5x^3+15x^2+5x+2x^2-6x-2
=-5x^3+17x^2-x-2
z: =3x^3+3x^2+3x+4x^2+4x+4
=3x^3+7x^2+7x+4
f: Ta có: \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\)
a) \(\left(x+1\right)^3-\left(x-1\right)^3-6\cdot\left(x-1\right)^2=10\)
\(\Rightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\cdot\left(x^2-2x+1\right)=10\)
\(\Rightarrow6x^2+2-6x^2+12x-6=10\)
\(\Rightarrow12x-4=10\)
\(\Rightarrow12x=14\)
\(\Rightarrow x=\dfrac{7}{6}\)
b) \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=42\)
\(\Rightarrow x\left(x^2-25\right)-\left(x^3+8\right)=42\)
\(\Rightarrow x^3-25x-x^3-8=42\)
\(\Rightarrow-25x-8=42\)
\(\Rightarrow-25x=50\)
\(\Rightarrow x=\dfrac{50}{-25}=-2\)
c) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Rightarrow x^3-6x^2+12x-8-\left(x^3-27\right)+6\left(x^2+2x+1\right)=49\)
\(\Rightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Rightarrow24x+25=49\)
\(\Rightarrow24x=24\)
\(\Rightarrow x=\dfrac{24}{24}=1\)