K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

x=10 ; y=1; z=-1

15 tháng 1 2017

x=9; y=1; z=20, nãy nhầm

vui

x=2,y=2,z=4

8 tháng 7 2018

lời giải

17 tháng 8 2021

Ta có : \(\frac{x+y\sqrt{2021}}{y+z\sqrt{2021}}=\frac{a}{b}\left(a,b\inℕ^∗;\left(a,b\right)=1\right)\)

<=>\(bx-ay=\left(az-by\right)\sqrt{2021}\)

<=>\(\hept{\begin{cases}nx-ay=0\\az-by=0\end{cases}}\)<=>\(\frac{x}{y}=\frac{y}{z}=\frac{a}{b}\)=> xz = y2

Lại có : x2 + y2 + z2 = ( x + z )2 - 2xz + y2 = ( x + z )2 - y2 = ( x + z - y ) ( x + z + y )

Vì x + y + z > 1 và x2 + y2 + z2 là số ntố => \(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}}\)<=> x = y = z = 1 ( tm )

NV
18 tháng 4 2021

Trừ vế cho vế:

\(xy+z-\left(x+yz\right)=1\)

\(\Leftrightarrow x\left(y-1\right)-z\left(y-1\right)=1\)

\(\Leftrightarrow\left(x-z\right)\left(y-1\right)=1\)

Do \(y\) nguyên dương \(\Rightarrow y\ge1\Rightarrow y-1\ge0\Rightarrow x-z>0\)

\(\Rightarrow\left\{{}\begin{matrix}x-z=1\\y-1=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=2\\z=x-1\end{matrix}\right.\)

Thế vào \(x+yz=2020\)

\(\Rightarrow x+2\left(x-1\right)=2020\)

\(\Leftrightarrow3x=2022\Rightarrow x=674\Rightarrow z=673\)

Vậy \(\left(x;y;z\right)=\left(674;673;2\right)\)

20 tháng 9 2018

Xửa đề:

\(\frac{x-y\sqrt{2015}}{y-z\sqrt{2015}}=\frac{m}{n}\) (vơi m, n thuộc Z)

\(\Leftrightarrow xn-ym=\left(yn-zm\right)\sqrt{2015}\)

\(\Leftrightarrow\hept{\begin{cases}xn-ym=0\\yn-zm=0\end{cases}}\)

\(\Rightarrow\frac{x}{y}=\frac{m}{n}=\frac{y}{z}\)

\(\Rightarrow xz=y^2\)

\(\Rightarrow x^2+y^2+z^2=x^2+2xz+z^2-y^2=\left(x+z+y\right)\left(x+z-y\right)\)

\(\Rightarrow\orbr{\begin{cases}x+y+z=1\left(l\right)\\x+z-y=1\end{cases}}\)

\(\Rightarrow x+z=y+1\)

\(\Leftrightarrow x^2+2xz+z^2=y^2+2y+1\)

\(\Leftrightarrow x^2+\left(y-1\right)^2+z^2=2\)

\(\Rightarrow x=y=z=1\)

20 tháng 9 2018

Đề ghi nhầm rồi. Xao không co z vậy

1 tháng 5 2020

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

26 tháng 7

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ

 

17 tháng 2 2021

lớp 7 sao giải đc