cho hình bình hành ABCD Gọi O là giao điểm của AC vaBD từ A kẻ AM vuông góc với BD TỪ C kẻ CN vuông góc với BD.chứng minhAM =CN,o là trung điểm của MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét △AMD vuông tại M và △CNB vuông tại N có:
- \(AD=BC\) (ABCD là hình bình hành)
- \(\hat{ADM}=\hat{CBN}\) (AD // BC)
⇒ △AMD = △CNB (c.h-g.n) ⇒ AM=NC (1)
\(\begin{matrix}AM\perp MN\\AN\perp NC\end{matrix}\left(gt\right)\Rightarrow AM\text{ // }NC\left(2\right)\)
Từ (1) và (2). Vậy: AMCN là hình bình hành (đpcm)
============
b/ AC và MN là hai đường chéo của hình bình hành AMNC
- Mà I là trung điểm MN
Vậy: I là trung điểm của AC (Trong hình bình hành, hai đường chéo cắt nhau tại trung điểm của mỗi đường) (đpcm)
Xét ΔADM vuông tại M và ΔCBN vuông tại N có
AD=BC
\(\widehat{ADM}=\widehat{CBN}\)
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Suy ra: Hai đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của MN
nên I là trung điểm của AC
a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
góc ADH=góc CBK
=>ΔAHD=ΔCKB
=>AH=CK
mà AH//CK
nên AHCK là hình bình hành
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm của AC
AHCK là hình bình hành
=>AC cất HK tại trung điểm của mỗi đường
=>OH=OK
b: ΔAHD=ΔCKB
=>HD=BK
Cho tứ giác ABCD là hình bình hành. Từ A kẻ AE vuông góc với BD, từ C kẻ CF vuông góc với BD(E,F thuộc BD)
a) Chứng minh ΔAED=ΔCFB
b) Gọi O là trung điểm AC. Chứng minh từ giác AECF là hình bình hành, từ đó suy ra O là trung điểm EF
a: Xét ΔADM vuông tại M và ΔCBN vuông tại N có
AD=BC
\(\widehat{ADM}=\widehat{CBN}\)
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
a: Xét ΔAMD vuông tại M và ΔCNB vuông tại N có
AD=CB
\(\widehat{ADM}=\widehat{CBN}\)
Do đó: ΔAMD=ΔCNB
Suy ra: AM=CN
Xét ΔADM vuông tại M và ΔCBN vuông tại N có
AD=CB
\(\widehat{ADM}=\widehat{CBN}\)
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Suy ra: AC và MN cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của MN