tìm x,biết:
\(\frac{x}{-45}\) = \(\frac{-20}{x}\)
giúp mik đi !! ai ghé qua câu này cho mik xin đáp án nhoa!!?? T^T
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{a}{5}=\frac{b}{-4}=\frac{a-b}{5-\left(-4\right)}=\frac{a-2b}{5-2\left(-4\right)}\)
Mà a - 2b = 26
\(\Rightarrow\frac{a-b}{5-2\left(-4\right)}=\frac{26}{13}=2\)
\(\Rightarrow\frac{a}{5}=2\)
\(a=2.5=10\)
\(\Rightarrow\frac{b}{-4}=2\)
\(b=2.\left(-4\right)=-8\)
Vậy a = 10
b = -8
Có : \(\frac{b}{-4}=\frac{2b}{-8}\)
Do \(\frac{a}{5}=\frac{b}{-4}\Rightarrow\frac{a}{5}=\frac{2b}{-8}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{5}=\frac{2b}{-8}=\frac{a-2b}{5-\left(-8\right)}=\frac{26}{13}=2\)
\(\Rightarrow\hept{\begin{cases}a=5\cdot2=10\\2b=-8\cdot2=-16\Rightarrow b=\frac{-16}{2}=-8\end{cases}}\)
\(\left|2x-3\right|=3-2x\)
\(ĐK:x\le\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3-2x\\3-2x=3-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\0=0\left(đúng\right)\end{matrix}\right.\)
Vậy \(S=\left\{x\in R;x=\dfrac{3}{2}\right\}\)
Bạn Bùi Minh Tú có thể giải thích rõ hơn đc ko? Chứ bạn viết thế mik ko bt bạn giải kiểu gì đâu
Đây là toán nâng cao chuyên đề tìm phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Giải:
20\(^x\) : 14\(^x\) = \(\dfrac{10}{7}\)\(x\) (\(x\) \(\in\) N)
\(\left(\dfrac{20}{14}\right)^x\) = \(\dfrac{10}{7}\)⇒ \(x\)\(\left(\dfrac{10}{7}\right)^x\) = \(\dfrac{10}{7}\)\(x\)
\(x\) = \(\left(\dfrac{10}{7}\right)^x\): \(\dfrac{10}{7}\) ⇒ \(x\) =\(\left(\dfrac{10}{7}\right)^{x-1}\)
Nếu \(x\) = 0 ta có 0 = (\(\dfrac{10}{7}\))-1 = \(\dfrac{7}{10}\) (vô lý)
Nếu \(x\) = 1 ta có: 1 = \(\left(\dfrac{10}{7}\right)^{1-1}\) = 1 (nhận)
Nếu \(x\) > 1 ta có: \(x\) \(\in\) N mà (\(\dfrac{10}{7}\))\(x\) không phải là số tự nhiên nên
\(x\) \(\ne\) (\(\dfrac{10}{7}\))\(x-1\) (loại)
Từ những lập luận trên ta có \(x\) = 1 là số tự nhiên duy nhất thỏa mãn đề bài.
Vậy \(x\) = 1
1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
\(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)
=> x = 75.4 : 15 = 20 ;
y = 60.4 : 15 = 16 ;
z = 45.4 : 15 = 12
Vậy x = 20 ; y = 16 ; z = 12
2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)
Nếu x + y + z + t = 0
=> x + y = - (z + t)
=> y + z = - (t + x)
=> z + t = - (x + y)
=> t + x = - (z + y)
Khi đó :
P = \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
=> P = 4
Nếu x + y + z + t khác 0
=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)
=> y + z + t = z + t + x = t + x + y = x + y + z
=> x =y = z = t
Khi đó : P = 1 + 1 + 1 + 1 = 4
Vậy nếu x + y + z + t = 0 thì P = - 4
nếu x + y + z + t khác 0 thì P = 4
Ta có : \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...+\left|x+\frac{1}{110}\right|\ge0\forall x\)
=> 11x \(\ge\)0
=> x \(\ge\)0
Khi đó \(\orbr{\begin{cases}x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=11x\left(10\text{ số hạng x }\right)\\x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=-11x\left(10\text{ số hạng x}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=11x\\10x+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=-11x\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=11x\\10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=-11x\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=11x\\10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=-11x\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(1-\frac{1}{11}\right)=11x\\10x+\left(1-\frac{1}{11}\right)=-11x\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{10}{11}\\21x=-\frac{10}{11}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{10}{11}\left(\text{tm}\right)\\x=-\frac{10}{231}\left(\text{loại}\right)\end{cases}}}\)
Vậy \(x=\frac{10}{11}\)
Đây là toán nâng cao chuyên đề tìm phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Giải:
20\(^x\) : 14\(^x\) = \(\dfrac{10}{7}\)\(x\) (\(x\) \(\in\) N)
\(\left(\dfrac{20}{14}\right)^x\) = \(\dfrac{10}{7}\)⇒ \(x\)\(\left(\dfrac{10}{7}\right)^x\) = \(\dfrac{10}{7}\)\(x\)
\(x\) = \(\left(\dfrac{10}{7}\right)^x\): \(\dfrac{10}{7}\) ⇒ \(x\) =\(\left(\dfrac{10}{7}\right)^{x-1}\)
Nếu \(x\) = 0 ta có 0 = (\(\dfrac{10}{7}\))-1 = \(\dfrac{7}{10}\) (vô lý)
Nếu \(x\) = 1 ta có: 1 = \(\left(\dfrac{10}{7}\right)^{1-1}\) = 1 (nhận)
Nếu \(x\) > 1 ta có: \(x\) \(\in\) N mà (\(\dfrac{10}{7}\))\(x\) không phải là số tự nhiên nên
\(x\) \(\ne\) (\(\dfrac{10}{7}\))\(x-1\) (loại)
Từ những lập luận trên ta có \(x\) = 1 là số tự nhiên duy nhất thỏa mãn đề bài.
Vậy \(x\) = 1
2:
a: 27(x-45)=0
=>x-45=0
=>x=45
b: (x-47)-115=0
=>x-47=115
=>x=162
d: x-105:21=15
=>x-5=15
=>x=20
1:
a: =35*(34+86)+65*(75+45)
=120*35+120*65
=120*100=12000
b: \(=39\left(53+47\right)-21\left(53+47\right)\)
=18*100=1800
b) \(\frac{26+x}{39-x}=\frac{6}{7}\)
=> 7( 26+ x) = 6(39-x)
=>182 +7x = 234 - 6x
=> 7x+6x = 234-182
=> 13x= 52
=> x=4
a) \(\frac{26+x}{39+x}=\frac{6}{7}\)
=> 7(26+x) = 6(39+x)
=> 182 + 7 x = 234 + 6x
=> 7x - 6x = 234 - 182
=> x = 52
Giải:
Ta có:
\(\frac{x}{-45}=\frac{-20}{x}\)
\(\Rightarrow x^2=\left(-45\right).\left(-20\right)\)
\(\Rightarrow x^2=900\)
\(\Rightarrow x=30\) hoặc \(x=-30\)
Vậy \(x=30\) hoặc \(x=-30\)
\(\frac{x}{-45}=\frac{-20}{x}\)
=> \(x^2=900\)
=> \(\left[\begin{array}{nghiempt}x=30\\x=-30\end{array}\right.\)