K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

- Hai đường thẳng song song thì không có điểm chung và không cắt nhau

- Khi 1 đường thẳng  cắt 2 đường thẳng  mà trong các góc tạo thành có 1 cặp góc so le trong bằng nhau, đồng vị bằng nhau và trong cùng phiá bù nhau thig 2 đương thẳng đó song song

 

 

a b c

a b c

 

a b c B C        B + C =180o

 

 

4 tháng 10 2016

sai rùi cậu ạ ^^

13 tháng 10 2019

Nêu định nghĩa và tính chất của hai góc đối đỉnh? Vẽ hình? Ghi giả thiết, kết luận.

* Định nghĩa : Hai góc đối đỉnh là hai góc mà mỗi cạnh của hóc này là tia đối của một cạnh của góc kia

* Tính chất : Hai góc đối đỉnh thì bằng nhau

* Hình Ôn tập chương III : Thống kê

+ giả thiết : Hai góc đối đỉnh

+ Kết luận : thì bằng nhau

2) Phát biểu định nghĩa đường trung trực của đoạn thẳng? Vẽ hình minh họa.

Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đương trung trực của đoạn thẳng ấy

Hình : Ôn tập chương III : Thống kê

3) Phát biểu dấu hiệu nhận biết hai đường thẳng song song? Vẽ hình ghi giả thiết, kết luận.

Nếu đương thẳng x cắt hai đường thẳng a,b và trong các góc tạo thành có một cặp góc so le trong bằng nhau ( hoặc một cặp góc đồng vị bằng nhau ) thì a và b song song với nhau

Hình : Ôn tập chương III : Thống kê

giả thiết , kết luận :

Ôn tập chương III : Thống kê

4) Phát biểu tiên đề ơclit? Vẽ hình minh họa.

Qua một điểm ở ngoài một đường thẳng chỉ có một đường thẳng song song với đường thẳng đó

Hình : Ôn tập chương III : Thống kê

5) Phát biểu định lí về tổng 3 góc của một tam giác? Định nghĩa và tính chất góc ngoài của tam giác.

* Định lí : Tổng ba góc của một tam giác bằng 180o

* Định nghĩa : Góc ngoài của một tam giác là góc kề bù với một góc của tam giác ấy

* Định lí : Mỗi góc ngoài của một tam giác bằng tổng của hai góc trong không kề với nó

6) Phát biểu các trường hợp bằng nhau của hai tam giác? Vẽ hình ghi giả thiết, kết luận.

* Trường hợp bằng nhau thứ nhất của tam giác cạnh - cạnh - cạnh ( c.c.c)

- Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau

Hình : Ôn tập chương III : Thống kê

* Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh ( c.g.c)

- Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau

Hình : Ôn tập chương III : Thống kê

* Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc (g.c.g)

- Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau

Hình : Ôn tập chương III : Thống kê

13 tháng 10 2019

1.  x x' y y' O 1 2 3 4 GT xx' cắt yy' tại O KL ^O1 = ^O3 ^O2=^O4 Qh3 vuông góc // a b c GT a_|_ c; b _|_ c KL a//b T/c 1 sương sương như qh3 nha T/c 2 a b c GT a//b c_|_ a KL c_|_b T/c 3 a b c GT a,b phân biệt a//c,b//c KL a//b

25 tháng 10 2021

hai đường thẳng song song nếu có một đường thẳng cắt nó 

+) tạo thành hai cặp góc sole trong bằng nhau

+) bốn cặp góc bàng nhau

+) hai góc trong cùng phía

25 tháng 10 2021

GT // KL

11 tháng 11 2021

a b c

GT:Nếu một đường thẳng cắt 2 đường thẳng song song

KL :  thì 2 góc sole trong bằng nhau

11 tháng 11 2021

Giả thiết: a//b

c cắt a và b tại A và B

Kết luận: \(\widehat{A_1}=\widehat{B_2}\)

11 tháng 11 2021

Giả thiết:

Cho đường thẳng a,b,ca,b,c

Đường thẳng cc cắt đường thẳng a,ba,b lần lượt tại A,BA,B

ˆA1=ˆB1A1^=B1^

Kết luận:

ˆA2=ˆB1A2^=B1

Chứng minh:

Ta có: ˆA1=ˆB1A1^=B1^ (giải thiết)

Mà ˆA1=ˆA2A1^=A2^ (đối đỉnh)

⇒ˆA2=ˆB1(=ˆA1)⇒A2^=B1^(=A1^)

Mà ˆA2A2^ và ˆB1B1^ ở vị trí so le tron

⇒⇒ đpcm.

image

11 tháng 11 2021

      gt       |1 đt cắt 2 đt   //

-------------------------------------------

      kl        |tạo ra 2 cặp góc slt = nhau

b:

gt: a\(\perp\)b

b//c

kl: \(c\perp a\)

11 tháng 2 2017

Hai đường thẳng phân biệt vuông góc với đường thẳng thứ ba thì chúng song song với nhau (hình a)

a⊥ c;b⊥c⇒ a//b

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia (hình b)

a//b; c⊥ a⇒ c ⊥ b

Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau (hình c)

a//c; b//c ⇒ a//b