Tìm x, biết : (1\(\frac{3}{7}\)- x) . 3\(\frac{1}{3}\) = -2\(\frac{31}{42}\)
Làm ơn đấy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)
\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)
\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)
\(\Rightarrow-1\le x< 6\)
\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)
Bài b tương tự
Bài 1 : Ta có:
\(\frac{7+\frac{7}{11}+\frac{7}{23}+\frac{7}{31}}{9+\frac{9}{11}+\frac{9}{23}+\frac{9}{31}}\)
= \(\frac{7.\left(1+\frac{1}{11}+\frac{1}{23}+\frac{1}{31}\right)}{9.\left(1+\frac{1}{11}+\frac{1}{23}+\frac{1}{31}\right)}\)
= \(\frac{7}{9}\)
Bài 2 :
\(\frac{x}{2}+\frac{3x}{4}+\frac{5x}{6}=\frac{10}{24}\)
=> \(\frac{12x+18x+20x}{24}=\frac{10}{24}\)
=> 50x = 10
=> x = 10 : 50
=> x = 1/5
Bài 3 : Để A nhận giá trị nguyên thì 3 \(⋮\)x + 3
<=> x + 3 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng :
x + 3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 | -6 |
Vậy
\(S=\frac{\left(9\frac{3}{8}:5,2+3,4.2\frac{7}{34}\right):1\frac{9}{16}}{0,31.8\frac{2}{2}-5,61:27\frac{1}{3}}\)\(\Rightarrow S=\frac{\left(\frac{75}{8}.\frac{5}{26}+\frac{17}{5}.\frac{75}{34}\right):\frac{25}{16}}{\frac{31}{100}.9-\frac{561}{100}.\frac{3}{82}}\)\(\Rightarrow S=\frac{\left(\frac{75.5}{8.26}-\frac{17.75}{5.34}\right).\frac{16}{25}}{\frac{31.9}{100}-\frac{561.3}{100.82}}\)
\(\Rightarrow S=\frac{\left(\frac{375}{208}-\frac{15}{2}\right).\frac{16}{25}}{\frac{279}{100}-\frac{1682}{8200}}\)\(\Rightarrow S=\frac{\frac{-1185}{208}.\frac{16}{25}}{\frac{21196}{8200}}\)\(\Rightarrow S=\frac{-237}{65}:\frac{21196}{8200}\)\(\Rightarrow S=\frac{-194340}{137774}\)
\(\Rightarrow x=\frac{2}{3}S\Rightarrow x=\frac{2}{3}.\frac{-194340}{137774}\Rightarrow x=\frac{-388680}{413322}\)
\(M=\frac{23\frac{11}{15}-26\frac{13}{20}}{12^2+5^2}:\frac{1-\frac{1}{3}-\frac{1}{42}-\frac{1}{56}}{3^2.13.2}-\frac{19}{37}\)\(\Rightarrow M=\frac{\frac{356}{15}-\frac{533}{20}}{12^2+5^2}:\frac{\frac{5}{8}}{3^2.13.2}-\frac{19}{37}\)
\(\Rightarrow M=\frac{\frac{-35}{12}}{12^2+5^2}.\frac{3^2.13.2}{\frac{5}{8}}-\frac{19}{37}\)\(\Rightarrow M=\frac{-84}{13}-\frac{19}{37}\Rightarrow M=\frac{-3355}{481}\Rightarrow15\%M=\frac{-3355}{481}.15\%\Rightarrow15\%M=\frac{-2013}{1924}\)
\(\frac{47}{12}\left|x\right|=1\frac{11}{31}\cdot4\frac{3}{7}-\left(1,5-3\frac{1}{3}\right)\)
=> \(\frac{47}{12}\left|x\right|=\frac{42}{31}\cdot\frac{31}{7}-\left(\frac{3}{2}-\frac{10}{3}\right)\)
=> \(\frac{47}{12}\left|x\right|=6-\left(-\frac{11}{6}\right)\)
=> \(\frac{47}{12}\left|x\right|=\frac{47}{6}\)
=> \(\left|x\right|=\frac{47}{6}:\frac{47}{12}\)
=> \(\left|x\right|=\frac{47}{6}\cdot\frac{12}{47}\)
=> \(\left|x\right|=2\)
=> \(x\in\left\{2;-2\right\}\)
Lời giải:
$2\frac{2}{6}x+8\frac{2}{3}=3\frac{1}{3}$
$\frac{7}{3}x=3\frac{1}{3}-8\frac{2}{3}=\frac{-16}{3}$
$x=\frac{-16}{3}: \frac{7}{3}=\frac{-16}{7}$
----------------------
$3\frac{2}{7}x-\frac{1}{8}=2\frac{3}{4}$
$\frac{23}{7}x=2\frac{3}{4}+\frac{1}{8}$
$\frac{23}{7}x=\frac{23}{8}$
$x=\frac{23}{8}: \frac{23}{7}=\frac{7}{8}$
1) \(\left|x-\frac{3}{5}\right|< \frac{1}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}< \frac{1}{3}\\x-\frac{3}{5}< -\frac{1}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{1}{3}+\frac{3}{5}\\x< \frac{-1}{3}+\frac{3}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x< \frac{5}{15}+\frac{9}{15}\\x< \frac{-5}{15}+\frac{9}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{14}{15}\\x< \frac{4}{15}\end{cases}}\)
vay \(\orbr{\begin{cases}x< \frac{14}{15}\\x< \frac{4}{15}\end{cases}}\)
2) \(\left|x+\frac{11}{2}\right|>\left|-5,5\right|\)
\(\left|x+\frac{11}{2}\right|>5,5\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{11}{2}>\frac{11}{2}\\x+\frac{11}{2}>-\frac{11}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{11}{2}-\frac{11}{2}\\x>\frac{-11}{2}-\frac{11}{2}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>0\\x>-11\end{cases}}\)
vay \(\orbr{\begin{cases}x>0\\x>-11\end{cases}}\)
3) \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\Rightarrow\left|x-\frac{7}{5}\right|>\frac{2}{5}\) va \(\left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{7}{5}>\frac{2}{5}\\x-\frac{7}{5}>\frac{-2}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{2}{5}+\frac{7}{5}\\x>\frac{-2}{5}+\frac{7}{5}\end{cases}}\)va \(\orbr{\begin{cases}x-\frac{7}{5}< \frac{3}{5}\\x-\frac{7}{5}< \frac{-3}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{3}{5}+\frac{7}{5}\\x< \frac{-3}{5}+\frac{7}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{9}{5}\\x>1\end{cases}}\)va \(\orbr{\begin{cases}x< 2\\x< \frac{4}{5}\end{cases}}\)
vay ....
\(\left(1\frac{3}{7}-x\right)\times3\frac{1}{3}=-2\frac{31}{42}\)
\(\left(\frac{10}{7}-x\right)\times\frac{10}{3}=\left(-\frac{115}{42}\right)\)
\(\frac{10}{7}-x=\left(-\frac{115}{42}\right)\div\frac{10}{3}\)
\(\frac{10}{7}-x=\left(-\frac{115}{42}\right)\times\frac{3}{10}\)
\(\frac{10}{7}-x=\left(-\frac{23}{28}\right)\)
\(x=\frac{10}{7}-\left(-\frac{23}{28}\right)\)
\(x=\frac{10}{7}+\frac{23}{28}\)
\(x=\frac{40}{28}+\frac{23}{28}\)
\(x=\frac{63}{28}\)
thanks nha