so sánh 2015^10+2015^3 và 2016^10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(A=\frac{10^{2014}+2016}{10^{2015}+2016}\Rightarrow10A=\frac{10^{2015}+20160}{10^{2015}+2016}=\frac{10^{2015}+2016+18144}{10^{2015}+2016}=1+\frac{18144}{10^{2015}+2016}\)
Xét \(B=\frac{ 10^{2015}+2016}{10^{2016}+2016}\Rightarrow10B=\frac{10^{2016}+20160}{10^{2016}+2016}=\frac{10^{2016}+2016+18144}{10^{2016}+2016}=1+\frac{18144}{10^{2016}+2016}\)
Có \(\frac{18144}{10^{2015}+2016}>\frac{18144}{10^{2016}+2016}\)
\(\Rightarrow10A>10B\Leftrightarrow A>B\)
\(10A=\dfrac{10^{2015}+2016+9\cdot2016}{10^{2015}+2016}=1+\dfrac{18144}{10^{2015}+2016}\)
\(10B=\dfrac{10^{2016}+9+18144}{10^{2016}+2016}=1+\dfrac{18144}{10^{2016}+2016}\)
mà \(\dfrac{18144}{10^{2015}+2016}>\dfrac{18144}{10^{2016}+2016}\)
nên A>B
Lời giải:
$\frac{7}{10^{2015}}+\frac{15}{10^{2016}}-(\frac{7}{10^{2016}}+\frac{15}{10^{2015}})$
$=\frac{-8}{10^{2015}}+\frac{8}{10^{2016}}=8(\frac{1}{10^{2016}}-\frac{1}{10^{2015}})<0$
$\Rightarrow \frac{7}{10^{2015}}+\frac{15}{10^{2016}}< \frac{7}{10^{2016}}+\frac{15}{10^{2015}}$